
Python Mastery
David M. Beazley

http://www.dabeaz.com

Edition: Fri Mar 11 11:43:26 2016

Copyright (C) 2016
David M Beazley

All Rights Reserved





Python Mastery : Table of Contents

! 1. Python Review! ! ! ! ! ! ! ! 4
! 2. Idiomatic Data Handling!! ! ! ! ! ! 31
! 3. Classes and Objects! ! ! ! ! ! ! 76
! 4. Inside Python Objects! ! ! ! ! ! ! 121
! 5. Pythonic Coding! ! ! ! ! ! ! ! 152
! 6. Working with Code! ! ! ! ! ! ! 182
! 7. Metaprogramming! ! ! ! ! ! ! 204
! 8. Iterators, Generators, and Coroutines!! ! ! ! 234
! 9. Modules and Packages! ! ! ! ! ! ! 256

Edition: Fri Mar 11 11:43:26 2016

Course Summary

Python Mastery is an accelerated training course designed for programmers who al-
ready know the basics of Python, but who want to know how to use it more effectively.  
A major focus of the course is on advanced features that are widely used in the Python 
world, but which don’t get much coverage in more introductory tutorials and books. This 
includes the inner workings of the Python object system, as well as decorators, meta-
classes, generators, coroutines, closures, and context managers.

System Requirements

The course assumes the use of Python 3.5 on any operating system platform.   

Support Files and Exercises

Support files and exercises can be downloaded at the following URL:

http://www.dabeaz.com/python/pythonmaster.zip

This zip file needs to be extracted on your machine.   You will find course exercises in 
the pythonmaster/Exercises folder.





0. Course Setup

Course Setup                     0-1
Required Files                   0-2
Working Environment              0-3
Class Exercises                  0-4
General Tips                     0-6

1. Python Review

Python Review                    1-1
Overview                         1-2
All Things Python                1-3
Running Python                   1-4
Interactive Mode                 1-5
Creating Programs                1-6
Running Programs                 1-7
python -i                        1-8
Exercise 1.1                     1-9
Program Execution                1-10
Comments                         1-11
Variables                        1-12
Expressions                      1-13
Conditionals                     1-14
Relations                        1-15
Looping                          1-16
Looping Control-Flow             1-17
Printing                         1-18
Formatted Printing               1-19
pass statement                   1-20
Core Python Objects              1-21
Manipulating Objects             1-22
Exercise 1.2                     1-23
File Input and Output            1-24
Common Idioms                    1-25
Closing Files                    1-26
Text Data                        1-27
Exercise 1.3                     1-28
Simple Functions                 1-29
Exception Handling               1-31
Exceptions                       1-32
Exception Values                 1-34
Catching Multiple Errors         1-35
finally statement                1-36
Exercise 1.4                     1-37
Objects                          1-38
Classes                          1-39
Instances                        1-40
__init__ method                  1-41
Methods                          1-42
Exercise 1.5                     1-43
Modules                          1-44
Namespaces                       1-45
import as statement              1-46
from module import               1-47
from module import *             1-48

Main Module                      1-50
__main__ check                   1-51
Summary                          1-52
Exercise 1.6                     1-53

2. Idiomatic Data Handling

Idiomatic Data Handling          2-1
Data Structures                  2-2
Tuples                           2-4
Dictionaries                     2-5
Dictionary Thoughts              2-6
User-Defined Classes             2-7
Classes and Slots                2-8
Named Tuples                     2-9
Exercise 2.1                     2-11
Containers                       2-12
Lists                            2-13
Sets                             2-14
Dicts                            2-15
Dictionary Views                 2-16
List/Dict Conversions            2-18
Exercise 2.2                     2-19
The Secret Containers            2-20
Counting Things                  2-21
Multidicts                       2-22
Keeping a History                2-23
Controlling Dict Order           2-24
Commentary                       2-25
Exercise 2.3                     2-26
Iteration                        2-27
Iterating on Tuples              2-28
Iterating on Varying Records     2-29
zip() function                   2-30
Keeping a Running Count          2-31
Iterating on Integers            2-32
Chaining Iteration               2-33
Unpacking Iterables              2-34
Unpacking Dictionaries           2-35
Argument Passing                 2-36
Sequence Reductions              2-37
Commentary                       2-38
Exercise 2.4                     2-39
List Sorting                     2-40
Callback Functions               2-43
Anonymous Functions              2-44
Using lambda                     2-45
Exercise 2.5                     2-46
List Comprehensions              2-47
List Comp: Examples              2-50
Set/Dict Comprehensions          2-51
Exercise 2.6                     2-52
Generator Expressions            2-53
Generators                       2-54
Using Generators                 2-55
Generator Arguments              2-56
Generator Functions              2-58



Exercise 2.7                     2-59
Secrets of the Builtins          2-60
Object Representation            2-61
Object Sizes                     2-62
Container Representation         2-63
Memory Requirements              2-64
Over-allocation                  2-65
Example : List Memory            2-66
Example : Dict Memory            2-67
Container Growth                 2-68
Memory and Instances             2-69
Set/Dict Hashing                 2-70
Key Restrictions                 2-71
Dict Storage Order               2-72
Collision Resolution             2-73
Exercise 2.8                     2-74
Final details on objects         2-75
Understanding Assignment         2-76
Assignment Example               2-77
Assignment Caution               2-78
Reassigning Values               2-79
Identity and References          2-80
Exploiting Immutability          2-81
Shallow Copies                   2-82
Deep Copying                     2-83
Names, Values, Types             2-84
Type Checking                    2-85
Everything is an object          2-86
Example: Emulating Cases         2-87
Final Words                      2-88
More Information                 2-89
Exercise 2.9                     2-90

3. Classes and Objects
Classes and Objects              3-1
When to use Objects?             3-2
An Example                       3-3
The class statement              3-4
Instances                        3-5
Instance Data                    3-6
Instance Methods                 3-7
Attributes                       3-8
History Lesson                   3-9
Odd Class Scoping                3-10
Exercise 3.1                     3-11
Manipulating Instances           3-12
Attribute Access Functions       3-13
Method Invocation                3-14
Bound Methods                    3-15
Exercise 3.2                     3-18
More on Class Definitions        3-19
Class Variables                  3-20
Using Class Variables            3-21
Class Methods                    3-22
Using Class Methods              3-23
Static Methods                   3-25
Using Static Methods             3-26

Exercise 3.3                     3-27
Classes and Encapsulation        3-28
Python Encapsulation             3-29
Private Attributes               3-30
Problem: Simple Attributes       3-33
Managed Attributes               3-34
Properties                       3-35
__slots__ Attribute              3-40
__slots__ Cautions               3-41
Commentary                       3-42
Exercise 3.4                     3-43
Inheritance                      3-44
Inheritance Example              3-46
"is a" relationship              3-48
object base class                3-49
Inheritance and Overriding       3-50
Inheritance and                  3-51
Multiple Inheritance             3-52
Using Inheritance                3-53
Exercise 3.5                     3-54
Special Methods                  3-55
String Conversions               3-56
Methods: Item Access             3-58
Methods: Mathematics             3-59
Instance Creation                3-60
Using                            3-61
Defining                         3-62
__del__ method                   3-63
Context Managers                 3-65
Exercise 3.6                     3-67
Code Reuse                       3-68
Interfaces                       3-69
Abstract Base Classes            3-70
Handler Classes                  3-72
Commentary                       3-76
Classes as a Template            3-77
Template Example                 3-78
Exercise 3.7                     3-80
Advanced Inheritance             3-81
Multiple Inheritance             3-82
Cooperative Inheritance          3-83
Mixin Classes                    3-86
Mixin Example                    3-87
Use of Mixins                    3-89
Exercise 3.8                     3-90

4. Inside Python Objects
Inside Python Objects            4-1
Overview                         4-2
Dictionaries Revisited           4-3
Dicts and Objects                4-4
Dicts and Instances              4-5
Dicts and Classes                4-7
Instances and Classes            4-8
Attribute Access                 4-10
Modifying Instances              4-11
Reading Attributes               4-12



Exercise 4.1                     4-14
How Inheritance Works            4-15
Reading Attributes               4-16
Single Inheritance               4-17
The MRO                          4-18
Multiple Inheritance             4-19
Why super()?                     4-23
super() Explained                4-24
Designing for Inheritance        4-25
More Information                 4-28
Exercise 4.2                     4-29
Dicts and Classes (Reprise)      4-30
Reading Attributes (Reprise)     4-31
Attribute Binding                4-32
Descriptor Protocol              4-33
Descriptor Demo                  4-34
Descriptor Storage               4-37
Descriptor Binding               4-38
Who Cares?                       4-39
Descriptors in Action            4-40
Descriptors and Properties       4-42
Descriptors and __slots__        4-43
Descriptor Commentary            4-44
Descriptor Application           4-45
Tricky Bits with __get__         4-47
Method Descriptors               4-49
Exercise 4.3                     4-50
Attribute Access Methods         4-51
__getattribute__()               4-52
__getattr__() method             4-53
__setattr__() method             4-54
__delattr__() method             4-55
Customizing Access               4-56
Example : Proxy                  4-57
Example: Delegation              4-59
Delegation Caution               4-60
Exercise 4.4                     4-61

5. Pythonic Coding
Being "Pythonic"                 5-1
Overview                         5-2
Functions                        5-3
Naming Conventions               5-4
Function Design                  5-5
Side Effects/Mutability          5-6
Argument Passing                 5-7
Optional Arguments               5-8
Keyword Arguments                5-9
Default Value Binding            5-10
Default Values                   5-11
Doc Strings                      5-13
Type Hints (PEP 484)             5-14
Assertions/Contracts             5-15
Exercise 5.1                     5-17
Function Error Checking          5-18
What Exceptions to Handle?       5-19
Example                          5-20

Catching All Errors              5-21
Ignoring Errors                  5-22
Reraising Exceptions             5-23
Managing Resources               5-24
What Exceptions to Raise?        5-25
Return Codes                     5-26
Logging                          5-27
Exercise 5.2                     5-28
Object Design                    5-29
Don't Use Classes                5-30
Definition Style                 5-31
Show the State                   5-32
No Getters/Setters               5-33
Know the Phrasebook              5-34
Zen of Python                    5-35
Exercise 5.3                     5-36
Testing Rocks, Debugging Sucks   5-37
unittest Module                  5-38
Example Code                     5-39
Using unittest                   5-40
Running unittests                5-43
unittest comments                5-44
Exercise 5.4                     5-45
Optimization                     5-46
Optimization : Algorithms        5-47
Optimization : Max Speedup       5-48
Profiling                        5-49
Profile Sample Output            5-50
Optimization : Built-in Types    5-51
Optimization : Layering          5-52
Optimization : Attributes        5-53
Optimization : Locality          5-54
Optimization : Binding           5-55
Optimization : Exceptions        5-56
Exercise 5.5                     5-59

6. Working with Code
Working with Code                6-1
Overview                         6-2
What is a function?              6-3
Function Arguments               6-4
Variable Arguments               6-5
Keyword-only Arguments           6-8
Passing Tuples and Dicts         6-9
Exercise 6.1                     6-10
Scoping Rules                    6-11
Statement Execution              6-12
Local Variables                  6-13
Global Variables                 6-14
Modifying Globals                6-15
globals() and locals()           6-16
Nested Scopes                    6-17
Exercise 6.2                     6-19
Function Objects                 6-20
Documentation Strings            6-21
Annotations                      6-22
Function Attributes              6-23



Function Inspection              6-24
inspect Module                   6-25
Exercise 6.3                     6-26
eval() and exec()                6-27
eval/exec Caution                6-29
Exercise 6.4                     6-30
Functional Programming           6-31
Higher Order Functions           6-32
Functions as Input               6-33
Returning Functions              6-34
Nested Scopes (Reprise)          6-35
Closures                         6-36
Using Closures                   6-38
Delayed Evaluation               6-39
Exercise 6.5                     6-41
Callable Objects                 6-42
Defining Callables               6-43
Exercise 6.6                     6-44

7. Metaprogramming
Metaprogramming                  7-1
Introduction                     7-2
Metaprogramming                  7-3
Python Metaprogramming           7-4
Decorators                       7-5
Wrapper Functions                7-6
Creating Wrappers                7-7
Wrappers as Replacements         7-8
Decorator Concept                7-9
Decorator Syntax                 7-10
Using Decorators                 7-12
Timing Measurements              7-13
Exercise 7.1                     7-14
Advanced Decorators              7-15
Multiple Decorators              7-16
Function Metadata                7-17
The Metadata Problem             7-18
Copying Metadata                 7-19
Decorators with Args             7-20
Exercise 7.2                     7-25
Class Decorators                 7-26
Example                          7-28
Exercise 7.3                     7-30
Disclaimer                       7-31
Types                            7-32
Type Constructor                 7-33
Types and Classes                7-34
Types of Classes                 7-35
Creating Types                   7-36
Classes Deconstructed            7-37
Creating a Class                 7-38
Class Definition Process         7-39
Class Definition                 7-42
Exercise 7.4                     7-43
Metaclasses Defined              7-44
The Metaclass Hook               7-45
Metaclass Selection              7-46

Metaclass Inheritance            7-48
Creating a New Metaclass         7-49
Using a Metaclass                7-50
Exercise 7.5                     7-51
Typical Applications             7-52
Using a Metaclass                7-53
Example: Duplicate Check         7-54
Example: Decoration              7-55
Example: Class Registration      7-56
Example: Instance Creation       7-57
Commentary                       7-58
Exercise 7.6                     7-59

8. Iterators, Generators, and 
Coroutines
Iterators, Generators, and Corou 8-1
Iteration                        8-2
Iteration: Protocol              8-3
Generators                       8-5
Generator Functions              8-6
Iterable Objects                 8-9
Exercise 8.1                     8-11
Producers & Consumers            8-12
Generator Pipelines              8-13
Exercise 8.2                     8-18
Yield as an Expression           8-19
Coroutines                       8-20
Coroutine Execution              8-21
Coroutine Priming                8-22
Using a Decorator                8-23
Processing Pipelines             8-24
An Example                       8-25
Dataflow                         8-27
Exercise 8.3                     8-28
Generator Control Flow           8-29
Closing a Generator              8-30
Raising Exceptions               8-31
Exercise 8.4                     8-32
Managed Generators               8-33
Example : Concurrency            8-36
Exercise 8.5                     8-39
Delegating Generation            8-40
More Information                 8-43
Exercise 8.6                     8-44

9. Modules and Packages
Modules and Packages             9-1
Introduction                     9-2
Modules Revisited                9-3
Module Objects                   9-4
Special Variables                9-5
Import Implementation            9-6
Module Cache                     9-7
Import Caching                   9-8
from module import               9-9



from module import *             9-10
Module Reloading                 9-11
Module Reloading Danger          9-12
Locating Modules                 9-13
Module Search Path               9-14
Exercise 9.1                     9-15
Organizing Libraries             9-16
Naming Conventions               9-17
Flat vs. Deep                    9-18
Creating a Package               9-19
Using a Package                  9-21
Fixing Relative Imports          9-22
Package Relative Imports         9-23
Package Environment              9-24
Exercise 9.2                     9-25
__init__.py Usage                9-26
Module Assembly                  9-27
Case Study                       9-30
Controlling Exports              9-31
Module Splitting                 9-32
Exercise 9.3                     9-35
Import Machinery                 9-36
Exercise 9.4                     9-37
Main Modules                     9-38
Main Entry Point                 9-39
Executable Subpackages           9-40
Exercise 9.5                     9-41
Preparing For Distribution       9-42
The setup.py File                9-43
Where to put setup.py?           9-44
MANIFEST.in                      9-45
Source Distributions             9-46
Installing a Package             9-47
User Local Installs              9-48
Exercise 9.6                     9-49





Copyright (C) 2016,  http://www.dabeaz.com 0-

Course Setup
Section 0

1

Copyright (C) 2016,  http://www.dabeaz.com 0-

Required Files
• Where to get Python (if not installed)

2

http://www.python.org

• Exercises for this class

http://www.dabeaz.com/python/pythonmaster.zip

• This course is written for Python 3.5

• Almost everything also applies to Python 2

1



Copyright (C) 2016,  http://www.dabeaz.com 0-

Working Environment

• This is not an introductory course

• Use whatever tools you currently use to 
develop Python code

• Editors, IDEs, etc.

• Almost everything in this course is platform-
neutral and will work everywhere

3

Copyright (C) 2016,  http://www.dabeaz.com 0-

Class Exercises
• Exercise descriptions are found in 

4

pythonmaster/Exercises/index.html

• All exercises have solution code

Look for the link at the bottom!

2



Copyright (C) 2016,  http://www.dabeaz.com 0-

Class Exercises

• Working solution code can be found in 

5

pythonmaster/Solutions

• Each problem has its own directory

2_1/                Exercise 2.1
2_2/                Exercise 2.2
...

Copyright (C) 2016,  http://www.dabeaz.com 0-

General Tips

• Try to save all of your work in "pythonmaster"

• Ask for help if stuck

• There is no shame in looking at solution code 
(it's fine to copy it, modify it, etc.)

• Pace yourself

6

3



Copyright (C) 2016,  http://www.dabeaz.com 1-

Python Review

1

Section 1

(Optional)

Copyright (C) 2016,  http://www.dabeaz.com 1-

Overview

2

• A very fast-paced review of Python

• The absolute basics that you should already 
know if you are taking this course

• Essential details for later parts of the class

4



Copyright (C) 2016,  http://www.dabeaz.com 1-

All Things Python

3

http://www.python.org

• Downloads

• Documentation and tutorial

• Community Links

• News and more

• Tutorial

Copyright (C) 2016,  http://www.dabeaz.com 1-

Running Python

• Python programs run inside an interpreter

• The interpreter is a simple "console-based" 
application that normally starts from a 
command shell (e.g., the Unix shell)
bash % python3
Python 3.5.0 (default, Oct 27 2015, 13:20:23) 
[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)]
>>> 

4

5



Copyright (C) 2016,  http://www.dabeaz.com 1-

Interactive Mode
• The interpreter runs a "read-eval" loop

>>> print('hello world')
hello world
>>> 37*42
1554
>>> for i in range(5):
...     print(i)
...
0
1
2
3
4
>>>

• Executes simple statements typed in directly

• Very useful for debugging, exploration
5

Copyright (C) 2016,  http://www.dabeaz.com 1-

Creating Programs

• Programs are put in .py files

# helloworld.py
print('hello world')

• Source files are simple text files

• Create with your favorite editor (e.g., emacs)

• Make sure you use "python" mode

6

6



Copyright (C) 2016,  http://www.dabeaz.com 1-

Running Programs

• Command line
bash % python3 helloworld.py
hello world
bash % 

7

• #! (Unix)
#!/usr/bin/env python3
# helloworld.py
print('hello world')

Copyright (C) 2016,  http://www.dabeaz.com 1-

python -i

• For debugging, use python -i

bash % python3 -i helloworld.py
hello world
>>>

• Runs your program and then enters the 
Python interactive shell afterwards

• Quite useful for debugging, testing, etc.

8

7



Copyright (C) 2016,  http://www.dabeaz.com 1-

Exercise 1.1

9

Time: 10 minutes

Copyright (C) 2016,  http://www.dabeaz.com 1-

Program Execution

• A Python program is a sequence of statements

• Each statement is terminated by a newline

• Statements are executed one after the other 
until you reach the end of the file.

• When there are no more statements, the 
program stops

10

8



Copyright (C) 2016,  http://www.dabeaz.com 1-

Comments

• Comments are denoted by #
# This is a comment
height    = 442           # Meters

11

• Extend to the end of the line

• There are no block comments in Python 
(e.g., /* ... */).

Copyright (C) 2016,  http://www.dabeaz.com 1-

Variables
• A variable is a name for some value

• Variable names follow same rules as C    
[A-Za-z_][A-Za-z0-9_]*

• You do not declare types (int, float, etc.)
height = 442              # An integer
height = 442.0            # Floating point
height = 'Really tall'    # A string

• Differs from C++/Java where variables have a  
fixed type that must be declared.

12

9



Copyright (C) 2016,  http://www.dabeaz.com 1-

Expressions

• Math works normally (precedence, assoc, etc.)
a = 2 + 3
b = 2 + 3 * 4
c = (2 + 3) * 4

• Operators are same as C
+, -, *, /, %, <<, >>, &, |, ^, ...

13

• Other operators (Python-specific)
7 // 4             Truncating division
7 ** 4             Power operator

Copyright (C) 2016,  http://www.dabeaz.com 1-

Conditionals
• If-else

if a < b:
    print('Computer says no')
else:
    print('Computer says yes')

• If-elif-else
if a == '+':
    op = PLUS
elif a == '-':
    op = MINUS
elif a == '*':
    op = TIMES
else:
    op = UNKNOWN

14

10



Copyright (C) 2016,  http://www.dabeaz.com 1-

Relations

15

• Relational operators
<  >  <=  >=  ==  !=

• Boolean expressions (and, or, not)

if b >= a and b <= c:
    print('b is between a and c')

if not (b < a or b > c):
    print('b is still between a and c')

Copyright (C) 2016,  http://www.dabeaz.com 1-

Looping

• While statement loops on a condition

• For-loop iterates over items (e.g., foreach)

16

while count > 0:
    print('T-minus', count)
    count -= 1
print('Boom!')

nums = [1,7,10,23]
for x in nums:
    print(x)          # Prints 1, 7, 10, 23

11



Copyright (C) 2016,  http://www.dabeaz.com 1-

Looping Control-Flow

17

• break - terminates a loop early
for name in names:
    if name == 'python': 
        break
    ...

• continue - skip to next iteration
for line in lines:
    if line == '\n':   # Ignore blank lines
        continue
    ...

Copyright (C) 2016,  http://www.dabeaz.com 1-

Printing
• The print function (Python 3)

print x  
print x,y,z
print 'Your name is', name

• Produces a single line of text

• Items are separated by spaces

• In Python 2, print is a statement

18

print(x)  
print(x,y,z)
print('Your name is', name)

12



Copyright (C) 2016,  http://www.dabeaz.com 1-

Formatted Printing

• Use % operator
print('%10s %10d %10.2f' % (name, shares, price))

• Or .format()

19

print('{:10s} {:10d} {:10.2f}'.format(name,shares,price))

Copyright (C) 2016,  http://www.dabeaz.com 1-

pass statement
• Sometimes you will need to specify an 

empty block of code

if name in namelist:
   # Not implemented yet (or nothing)
   pass
else:
   statements

20

• pass is a "no-op" statement

• It does nothing, but serves as a placeholder 
for statements (possibly to be added later)

13



Copyright (C) 2016,  http://www.dabeaz.com 1-

Core Python Objects
• Programs are built upon a core set of built-in 

datatypes (numbers, strings, lists, etc.)

21

None                   # Nothing, nada, nil, ...
True                   # Boolean
23                     # Integer
12345678123901234L     # Long integer
2.3                    # Float
2+3j                   # Complex
'Hello World'          # String
u'Spicy Jalape\u00f1o' # Unicode string
('www.python.org',80)  # Tuple
[1,2,3,4]              # List
{'name':'IBM', ... }   # Dictionary

• You should have already used most of these 
types if you've written any Python at all

Copyright (C) 2016,  http://www.dabeaz.com 1-

Manipulating Objects
• Objects are manipulated by operators

22

a + b                   # Add
x = a[i]                # Indexed lookup
y = a[i:j]              # Slicing
a[i] = val              # Indexed assignment
x in a                  # Containment
... many others ...

• Also manipulated by various methods
a.find('python')
a.split(',')
b.append(2)
...

• Available operators/methods depends on the 
object being manipulated

14



Copyright (C) 2016,  http://www.dabeaz.com 1-

Exercise 1.2

23

Time: 15 minutes

Copyright (C) 2016,  http://www.dabeaz.com 1-

File Input and Output
• Opening a file

f = open('foo.txt','r')      # Open for reading
g = open('bar.txt','w')      # Open for writing
h = open('log.txt','a')      # Open for appending

• To read data
line = f.readline()          # Read a line of text
data = f.read([maxbytes])    # Read data

• To write text to a file
g.write('some text')

24

• Closing a file (when done)
f.close()

15



Copyright (C) 2016,  http://www.dabeaz.com 1-

Common Idioms

• Reading a file line-by-line
f = open('foo.txt','r')      
for line in f:
    # Process the line
    ...
f.close()

• Reading an entire file into a string

25

f = open('foo.txt','r')      
data = f.read()
f.close()

Copyright (C) 2016,  http://www.dabeaz.com 1-

Closing Files
• Files need to be closed after use

f = open('foo.txt','r')      
# Use f
...
f.close()

• In modern Python, use 'with'
with open('foo.txt','r') as f:
    # Use f
    ...
# Automatically closed here

26

16



Copyright (C) 2016,  http://www.dabeaz.com 1-

Text Data
• When reading text, Python 3 assumes unicode

• You might need to give an encoding

f = open('foo.txt','r',encoding='latin-1')      

27

• For Unicode in Python 2, use io module
import io
f = io.open('foo.txt', 'r', encoding='latin-1')

• We don't actually cover much unicode in this 
course (mention it only occasionally)

Copyright (C) 2016,  http://www.dabeaz.com 1-

Exercise 1.3

28

Time: 10 minutes

17



Copyright (C) 2016,  http://www.dabeaz.com 1-

Simple Functions

• Use functions for code you want to reuse
def sumcount(n):
    total = 0
    while n > 0:
        total += n
        n -= 1
    return total

• Calling a function

a = sumcount(100)

29

• A function is just a series of statements that 
perform some task and return a result

Copyright (C) 2016,  http://www.dabeaz.com 1-

Simple Functions

• Functions behave in a sane manner

• Inner variables have local scope

• Things like recursion work fine

• You can have default arguments

• Will say more about functions later, but you 
should already know how to define and use 
simple function definitions

30

18



Copyright (C) 2016,  http://www.dabeaz.com 1-

Exception Handling
• Errors are reported as exceptions

• An exception causes the program to stop

31

• For debugging, message describes what 
happened, where the error occurred, along 
with a traceback.

>>> int('N/A')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'N/A'
>>>

Copyright (C) 2016,  http://www.dabeaz.com 1-

Exceptions

• To catch, use try-except statement
for line in f:
    fields = line.split()
    try:
        shares = int(fields[1])
    except ValueError:
        print("Couldn't parse", line)
    ...

32

• Exceptions can be caught and handled

Name must match the kind of error 
you're trying to catch

>>> int("N/A")
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'N/A'
>>>

19



Copyright (C) 2016,  http://www.dabeaz.com 1-

Exceptions

• To raise an exception, use the raise statement
raise RuntimeError('What a kerfuffle')

33

% python3 foo.py
Traceback (most recent call last):
  File "foo.py", line 21, in <module>
    raise RuntimeError("What a kerfuffle")
RuntimeError: What a kerfuffle

• Will cause the program to abort with an 
exception traceback (unless caught by try-
except)

Copyright (C) 2016,  http://www.dabeaz.com 1-

Exception Values
• Most exceptions have an associated value

• More information about what's wrong
raise RuntimeError('Invalid user name')

• Passed to variable supplied in except
try:
    ...
except RuntimeError as e:
    ...

• It's an instance of the exception type, but 
often looks like a string
except RuntimeError as e:
    print('Failed : Reason', e)

34

20



Copyright (C) 2016,  http://www.dabeaz.com 1-

Catching Multiple Errors
• Can catch different kinds of exceptions

try:
    ...
except ValueError as e:
    ...
except TypeError as e:
    ...

• Alternatively, if handling is the same
try:
    ...
except (ValueError, TypeError) as e:
    ...

35

• Catching any exception (danger awaits)
try:
    ...
except Exception as e:
    ...

Copyright (C) 2016,  http://www.dabeaz.com 1-

finally statement

• Specifies code that must run regardless of 
whether or not an exception occurs

lock = Lock()
...
lock.acquire()
try:
    ...
finally:  
    lock.release()      # release the lock

• Commonly use to properly manage 
resources (especially locks, files, etc.)

36

21



Copyright (C) 2016,  http://www.dabeaz.com 1-

Exercise 1.4

37

Time: 10 minutes

Copyright (C) 2016,  http://www.dabeaz.com 1-

Objects
• Python is an object-oriented language

• All of the basic data types (integers, strings, 
lists, etc.) are examples of "objects"

• Objects involve data and a set of "methods" 
that carry out various operations

38

a = 'Hello World'    # A string object
b = a.upper()        # A method applied to the string

items = [1,2,3]      # A list object
items.append(4)      # A method applied to the list

22



Copyright (C) 2016,  http://www.dabeaz.com 1-

Classes
• You can make your own objects

39

class Circle(object):
   def __init__(self, radius):
       self.radius = radius
   def area(self):
       return math.pi * (self.radius ** 2)
   def perimeter(self):
       return 2 * math.pi * self.radius

• What is a class?

• It's all of the function definitions that 
implement the various methods

Copyright (C) 2016,  http://www.dabeaz.com 1-

Instances
• Created by calling the class as a function

• Each instance gets its own data

>>> c.area()
50.26548245743669
>>> d.perimeter()
31.415926535897931
>>>

40

>>> c = Circle(4.0)
>>> d = Circle(5.0)
>>>

>>> c.radius
4.0
>>> d.radius
5.0
>>>

• Invoke the methods as follows

23



Copyright (C) 2016,  http://www.dabeaz.com 1-

__init__ method
• This method initializes a new instance

• Called whenever a new object is created

>>> c = Circle(4.0)

class Circle(object):
    def __init__(self, radius):
        self.radius = radius

newly created object

• Mostly, it just stores the data attributes

41

Copyright (C) 2016,  http://www.dabeaz.com 1-

Methods
• Functions that operate on instances

class Circle(object):
    ...
    def area(self):
        return math.pi * self.radius ** 2

• By convention, the instance is called "self"

• The object is just passed as first argument
>>> c.area()

def area(self):
    ...

The name is unimportant---the object is always passed as the first 
argument.  It is simply Python programming style to call this 
argument "self."   It's similar to the "this" pointer in C++.

42

24



Copyright (C) 2016,  http://www.dabeaz.com 1-

Exercise 1.5

43

Time: 10 minutes

Copyright (C) 2016,  http://www.dabeaz.com 1-

Modules

• Any Python source file is a module

• import statement loads and executes a module

# foo.py
def grok(a):
   ...
def spam(b):
   ...

import foo

a = foo.grok(2)
b = foo.spam('Hello')
...

44

25



Copyright (C) 2016,  http://www.dabeaz.com 1-

Namespaces

• A module is a collection of named values (i.e., 
it's said to be a "namespace")

• The names are simply all of the global variables 
and functions defined in the source file

• After import, module name used as a prefix
>>> import foo
>>> foo.grok(2)
>>>

45

• Module name is tied to source (foo -> foo.py)

Copyright (C) 2016,  http://www.dabeaz.com 1-

import as statement

• Exactly the same as import except the 
module object is assigned a different name

• The new name only applies locally within the 
source file that did the import (other files can 
import using the standard name without any 
confusion)

• Changes the local name of a module

# bar.py
import math as m

a = m.sin(x)

46

26



Copyright (C) 2016,  http://www.dabeaz.com 1-

from module import

• Lifts selected symbols out of a module and 
puts them into local scope
# bar.py
from math import sin,cos

def rectangular(r,theta):
    x = r*cos(theta)
    y = r*sin(theta)
    return x,y

47

• Allows parts of a module to be used without 
having to type the module prefix

Copyright (C) 2016,  http://www.dabeaz.com 1-

from module import *
• Takes all symbols from a module and places 

them into local scope
# bar.py
from math import *

def rectangular(r,theta):
    x = r*cos(theta)
    y = r*sin(theta)
    return x,y

48

• Useful if you are going to use a lot of 
functions from a module and it's annoying to 
specify the module prefix all of the time

27



Copyright (C) 2016,  http://www.dabeaz.com 1-

from module import *
• You should almost never use it in practice 

because it leads to poor code readability

• Example:

49

from math import *
from random import *

...
r = gauss(0.0,1.0)       # In what module?

• Makes it very difficult to understand someone 
else's code if you need to locate the original 
definition of a library function

Copyright (C) 2016,  http://www.dabeaz.com 1-

Main Module

• Python has no "main" function or method

• Instead, there is a "main" module

• It's simply the source file that runs first

50

bash % python3 foo.py
...

• Whatever module you give to the interpreter 
at startup becomes "main"

28



Copyright (C) 2016,  http://www.dabeaz.com 1-

__main__ check

• It is standard practice for modules that can 
run as a main program to use this convention:

51

# foo.py
...
if __name__ == '__main__':
   # Running as the main program
   ...
   statements
   ...

• Statements enclosed inside the if-statement 
become the "main" program

Copyright (C) 2016,  http://www.dabeaz.com 1-

Summary

• This has been an overview of basics

• If you've already been programming Python for 
awhile, you should already know this material

• Later sections go into much more depth

52

29



Copyright (C) 2016,  http://www.dabeaz.com 1-

Exercise 1.6

53

Time: 5 minutes

30



Idiomatic Data Handling
Section 2

Copyright (C) 2016,  http://www.dabeaz.com 2-

Data Structures
• Real programs must deal with complex data

• Example:  A holding of stock

100 shares of GOOG at $490.10

• An "object" with three parts

• Name ("GOOG", a string)

• Number of shares (100, an integer)

• Price (490.10, a float)

2

31



Copyright (C) 2016,  http://www.dabeaz.com 2-

Data Structures

• Some options

• Tuple

• Dictionary

• Class instance

• Named tuple

• Let's take a short tour

3

Copyright (C) 2016,  http://www.dabeaz.com 2-

Tuples
• A collection of values packed together

s = ('GOOG', 100, 490.1)

4

• Can use like an array
name = s[0]
cost = s[1] * s[2]

• Unpacking into separate variables
name, shares, price = s

• Immutable
s[1] = 75     # TypeError. No item assignment  

32



Copyright (C) 2016,  http://www.dabeaz.com 2-

Dictionaries
• An unordered set of values indexed by "keys"

s = {
 'name'   : 'GOOG',
 'shares' : 100,
 'price'  : 490.1
}

5

• Use the key name to access
name = s['name']
cost = s['shares'] * s['price']

• Modifications are allowed
s['shares'] = 75
s['date'] = '7/25/2015'
del s['name']

Copyright (C) 2016,  http://www.dabeaz.com 2-

Dictionary Thoughts

• Dictionaries are often a good choice for 
representing simple data records

• Easy to manipulate (can freely change fields, 
modify values, etc.)

• Improved readability (key names are usually 
more descriptive than numeric indices)

• Easy interoperability (e.g., convert to JSON)

6

33



Copyright (C) 2016,  http://www.dabeaz.com 2-

User-Defined Classes
• A simple data structure class

class Stock(object):
    def __init__(self, name, shares, price):
        self.name = name
        self.shares = shares
        self.price = price

7

• This gives you the nice object syntax...
>>> s = Stock('GOOG', 100, 490.1)
>>> s.name
'GOOG'
>>> s.shares * s.price
49010.0
>>>

Copyright (C) 2016,  http://www.dabeaz.com 2-

Classes and Slots
• For data structures, consider adding __slots__ 

class Stock(object):
    __slots__ = ('name', 'shares', 'price')
    def __init__(self, name, shares, price):
        self.name = name
        self.shares = shares
        self.price = price

8

• Slots is a performance optimization that is 
specifically aimed at data structures

• Less memory and faster attribute access

34



Copyright (C) 2016,  http://www.dabeaz.com 2-

Named Tuples
• namedtuple(clsname, fieldnames)

from collections import namedtuple

Stock = namedtuple('Stock',
                 ['name', 'shares', 'price'])

9

• It creates a class that you use to make instances
>>> s = Stock('GOOG',100,490.1)
>>> s.name
'GOOG'
>>> s.shares * s.price
49010.0
>>>

Copyright (C) 2016,  http://www.dabeaz.com 2-

Named Tuples
• Named tuples retain all of the core features of 

tuples (immutability, unpacking, indexing, etc.) 

10

>>> s = Stock('GOOG', 100, 490.1)
>>> s[0]
'GOOG'
>>> name, shares, price = s
>>> print('%10s %10d %10.2f' % s)
      GOOG        100     490.10
>>> isinstance(s, tuple)
True
>>> s.name = 'ACME'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
>>>

35



Copyright (C) 2016,  http://www.dabeaz.com 2-

Exercise 2.1

Time : 20 minutes

11

Copyright (C) 2016,  http://www.dabeaz.com 2-

Containers

• Programs often have to work many objects

• Lists (ordered data)

• Sets (unordered data, no duplicates)

• Dictionaries (unordered key-value data)

• The choice depends on the problem

12

36



Copyright (C) 2016,  http://www.dabeaz.com 2-

Lists
• Use a list when the order of data matters

• Example:  A list of tuples
portfolio = [
    ('GOOG', 100, 490.1),
    ('IBM', 50, 91.1),
    ('CAT', 150, 83.44)
]

portfolio[0]        ('GOOG', 100, 490.1)
portfolio[1]        ('IBM', 50, 91.1)

13

• Lists can be sorted and rearranged

Copyright (C) 2016,  http://www.dabeaz.com 2-

Sets
• A set is an unordered collection of items

a = {'IBM','AA','AAPL' }

• Sets can eliminate duplicates
names = ['IBM','YHOO','IBM','CAT','MSFT','CAT','IBM']
unique_names = set(names)

14

• Sets are useful for membership tests
members = set()

members.add(item)      # Add an item
members.remove(item)   # Remove an item

if item in members:    # Test for membership
   ...

37



Copyright (C) 2016,  http://www.dabeaz.com 2-

Dicts
• Useful for indices and lookup tables

prices = {
    'GOOG' : 513.25,
    'CAT'  : 87.22,
    'IBM'  : 93.37,
    'MSFT' : 44.12
    ...
}

15

• Common use
p = prices['IBM']            # Value lookup
p = prices.get('AAPL', 0.0)  # Lookup with default value
prices['HPE'] = 37.42        # Assignment

if name in prices:           # Membership test
   ...

Copyright (C) 2016,  http://www.dabeaz.com 2-

Dictionary Views

prices = {
   'IBM' : 91.1,
   'AA' : 23.15,
   'GOOG' : 490.1,
   'AAPL' : 152.12
}

16

{ 'IBM','AA','GOOG','AAPL' }

{ 91.1, 23.15, 490.1, 152.12 }

.keys()

.values()

• Dict contents are sometimes viewed as 
three different sets of data

.items()

{('IBM',91.1), ('AA',23.15),
 ('GOOG',490.1), ('AAPL',152.12)}

38



Copyright (C) 2016,  http://www.dabeaz.com 2-

Dictionary Views

17

• Views are overlays (not copies)

• Updates to the dict are reflected in the view

>>> names = prices.keys()
>>> names
dict_keys(['AA', 'GOOG', 'AAPL', 'IBM'])

>>> prices['HPE'] = 42.13
>>> names
dict_keys(['AA', 'GOOG', 'AAPL', 'IBM', 'HPE'])

Notice new entry 
in the view

Copyright (C) 2016,  http://www.dabeaz.com 2-

List/Dict Conversions

18

• dict(pairs) - Create a dict from key/value pairs
>>> data = [ ('GOOG',490.1), ('AA',23.15), ('IBM',91.5) ]
>>> dict(data)
{ 'AA': 23.15, 'IBM': 91.5, 'GOOG': 490.1 }
>>>

• list(dict) - Create a list of key names
>>> data = { 'AA': 23.15, 'IBM': 91.5, 'GOOG': 490.1 }
>>> list(data)
['AA', 'IBM', 'GOOG']
>>> 

• list(dict.items()) - Create a list of key/value pairs
>>> data = { 'AA': 23.15, 'IBM': 91.5, 'GOOG': 490.1 }
>>> list(data.items())
[('AA', 23.15), ('IBM', 91.5), ('GOOG', 490.1) ]
>>> 

39



Copyright (C) 2016,  http://www.dabeaz.com 2-

Exercise 2.2

Time : 20 minutes

19

Copyright (C) 2016,  http://www.dabeaz.com 2-

The Secret Containers

• The collections module

• defaultdict

• Counter

• deque

• OrderedDict

• ... and more

20

40



Copyright (C) 2016,  http://www.dabeaz.com 2-

Counting Things
• Example: Tabulate total shares of each stock 

21

portfolio = [
    ('GOOG', 100, 490.1),
    ('IBM', 50, 91.1),
    ('CAT', 150, 83.44),
    ('IBM', 100, 45.23),
    ('GOOG', 75, 572.45),
    ('AA', 50, 23.15)
]

• Solution: Use a Counter
from collections import Counter
total_shares = Counter()
for name, shares, price in portfolio:
    total_shares[name] += shares

>>> total_shares['IBM']
150
>>> 

{
   ...
   'IBM': 150
   ...
}

Copyright (C) 2016,  http://www.dabeaz.com 2-

Multidicts

22

• Problem: Map keys to multiple values
portfolio = [
    ('GOOG', 100, 490.1),
    ('IBM', 50, 91.1),
    ('CAT', 150, 83.44),
    ('IBM', 100, 45.23),
    ('GOOG', 75, 572.45),
    ('AA', 50, 23.15)
]

• Solution: Use a defaultdict
from collections import defaultdict
holdings = defaultdict(list)
for name, shares, price in portfolio:
    holdings[name].append((shares, price))

>>> holdings['IBM']
[ (50, 91.1), (100, 45.23) ]
>>> 

{
   ...
   'IBM': [ (50, 91.1),
            (100, 45.23) ]
   ...
}

41



Copyright (C) 2016,  http://www.dabeaz.com 2-

Keeping a History
• Problem: Keep a history of the last N things

line1
line2
line3
line4
line5
...

23

• Solution: Use a deque
from collections import deque

history = deque(maxlen=N)
with open(filename) as f:
    for line in f:
        history.append(line)
        ...

history = [ line3, line4, line5 ]

Copyright (C) 2016,  http://www.dabeaz.com 2-

Controlling Dict Order
• Problem: Create a dict where keys go in the 

order that you want 

• Solution: OrderedDict

24

from collections import OrderedDict
s = OrderedDict()
s['name'] = 'GOOG'
s['shares'] = 100
s['price'] = 490.1

>>> for key, val in s.items():
...     print(key,'=', val)
...
name = GOOG
shares = 100
price = 490.1
>>>

42



Copyright (C) 2016,  http://www.dabeaz.com 2-

Commentary

• collections is a useful module to know

• Simplifies many common data handling problems

• If you're not using it, you're missing out

25

Copyright (C) 2016,  http://www.dabeaz.com 2-

Exercise 2.3

Time : 15 minutes

26

43



Copyright (C) 2016,  http://www.dabeaz.com 2-

Iteration

• The for-loop iterates over a sequence

• It seems simple enough...

>>> names = ['IBM', 'YHOO', 'AA', 'CAT' ]
>>> for name in names:
...     print(name)
...
IBM
YHOO
AA
CAT
>>>

27

Copyright (C) 2016,  http://www.dabeaz.com 2-

Iterating on Tuples
• Consider a list of tuples

• Iteration with unpacking

28

portfolio = [
    ('GOOG', 100, 490.1),
    ('IBM', 50, 91.1),
    ('CAT', 150, 83.44),
    ('IBM', 100, 45.23),
    ('GOOG', 75, 572.45),
    ('AA', 50, 23.15)
]

for name, shares, price in portfolio:
    ...

• Iteration with a "throwaway" value (use __)
for name, __, price in portfolio:
    ...

44



Copyright (C) 2016,  http://www.dabeaz.com 2-

Iterating on Varying Records
• Consider a list of varying sized data structures

• Wildcard unpacking (Python 3 only)

29

prices = [
    ['GOOG', 490.1, 485.25, 487.5 ],
    ['IBM', 91.5],
    ['HPE', 13.75, 12.1, 13.25, 14.2, 13.5 ],
    ['CAT', 52.5, 51.2]
]

for name, *values in prices:
    print(name, values)

name    values
'GOOG'  [490.1, 485.25, 487.5 ]
'IBM'   [91.5]
'HPE'   [13.75, 12.1, 13.25, 14.2, 13.5 ]
'CAT'   [52.5, 51.2]

Copyright (C) 2016,  http://www.dabeaz.com 2-

zip() function
• Iterate on multiple sequences in parallel

columns = ['name','shares','price']
values  = ['GOOG',100, 490.1 ]

for colname, val in zip(columns, values):
    # Loops with colname='name'   val='GOOG'
    #            colname='shares' val=100
    #            colname='price'  val=490.1
    ...

30

• Common use: Making dictionaries
record = dict(zip(columns,values))

• Caution: Truncates to shortest input length
zip(['a','b','c'], [1,2]) ('a', 1), ('b', 2)

45



Copyright (C) 2016,  http://www.dabeaz.com 2-

Keeping a Running Count

• enumerate(sequence [, start])
names = ['IBM', 'YHOO', 'CAT' ]
for n, name in enumerate(names):
   # Loops with n=0 name='IBM'
   #            n=1 name='YHOO'
   #            n=2 name='CAT'

31

• Example: Line number tracking on a file

f = open(filename)
for lineno, line in enumerate(f, start=1):
    ...

Copyright (C) 2016,  http://www.dabeaz.com 2-

Iterating on Integers
• range([start,] end [,step])

for i in range(100):
    # i = 0,1,...,99

for j in range(10,20):
    # j = 10,11,..., 19

for k in range(10,50,2):
    # k = 10,12,...,48

• Note: The ending value is never included

• Caution: range() is often a "code smell" for 
problems being solved the "hard way" 

32

46



Copyright (C) 2016,  http://www.dabeaz.com 2-

Chaining Iteration
• Consider this code:

s1 = [1, 2, 3, 4]
s2 = [5, 6, 7, 8, 9, 10, 11]

for x in s1:
    ...           # x = 1, 2, 3, 4

for x in s2:
    ...           # x = 5, 6, 7, 8, 9, 10, 11

• Better: itertools.chain()

33

from itertools import chain

for x in chain(s1, s2):
    ...           # x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Copyright (C) 2016,  http://www.dabeaz.com 2-

Unpacking Iterables
• Consider these iterables

a = (1, 2, 3)
b = [4, 5]

• Making lists and tuples (Python 3.5+)

34

c = [ *a, *b ]     # c = [1, 2, 3, 4, 5]    (list)
d = ( *a, *b )     # d = (1, 2, 3, 4, 5)    (tuple)

• It's subtle, but maybe better than using +
>>> c = a + b
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: can only concatenate tuple (not "list") to tuple
>>> 

47



Copyright (C) 2016,  http://www.dabeaz.com 2-

Unpacking Dictionaries

• Consider these dicts
a = { 'name': 'GOOG', 'shares': 100, 'price':490.1 }
b = { 'date': '6/11/2007', 'time': '9:45am' }

• Combining into a single dict (Python 3.5+)

35

c = { **a, **b }  

>>> c
{ 'name': 'GOOG', 'shares':100, 'price': 490.1, 
  'date': '6/11/2007,'time': '9:45am' }
>>>

Copyright (C) 2016,  http://www.dabeaz.com 2-

Argument Passing
• Iterables can be expanded in function calls

a = (1, 2, 3)
b = (4, 5)

func(*a, *b)    #  func(1,2,3,4,5)

36

• Dictionaries can expand to keyword args
c = {'x': 1, 'y': 2 }

func(**c)   func(x=1, y=2)

• Combinations fine as long as positional go first
func(*a, **c)
func(*a, *b, **c)
func(0, *a, *b, 6, spam=37, **c)

48



Copyright (C) 2016,  http://www.dabeaz.com 2-

Sequence Reductions
• sum(s), min(s), max(s)

>>> s = [1, 2, 3, 4]
>>> sum(s)
10
>>> min(s)
1
>>> max(s)
4
>>>

37

• Boolean tests: any(s), all(s)
>>> s = [False, True, True, False]
>>> any(s)
True
>>> all(s)
False
>>>

Copyright (C) 2016,  http://www.dabeaz.com 2-

Commentary

• Iteration is an essential Python skill

• It's also a bit of an art-form

• Can save a lot of time by knowing builtin 
functions (enumerate, zip, etc.)

• Also: The itertools standard library

38

49



Copyright (C) 2016,  http://www.dabeaz.com 2-

Exercise 2.4

Time : 15 minutes

39

Copyright (C) 2016,  http://www.dabeaz.com 2-

List Sorting
• Lists can be sorted "in-place" (sort method)

s = [10,1,7,3]
s.sort()             # s = [1,3,7,10]

• Sorting in reverse order
s = [10,1,7,3]
s.sort(reverse=True)  # s = [10,7,3,1]

• It seems "simple" enough...

40

• Sorting a sequence (and getting a copy)
result = sorted(s)

50



Copyright (C) 2016,  http://www.dabeaz.com 2-

List Sorting
• Sort this list of dicts

portfolio = [
  {'name': 'AA', 'price': 32.2, 'shares': 100},
  {'name': 'IBM', 'price': 91.1, 'shares': 50},
  {'name': 'CAT', 'price': 83.44, 'shares': 150},
  {'name': 'MSFT', 'price': 51.23, 'shares': 200},
  {'name': 'GE', 'price': 40.37, 'shares': 95},
  {'name': 'MSFT', 'price': 65.1, 'shares': 50},
  {'name': 'IBM', 'price': 70.44, 'shares': 100}
]

41

• Question: How?

• By what criteria?  (name, shares, price)

Copyright (C) 2016,  http://www.dabeaz.com 2-

List Sorting
• You can control it using a "key function"

def stock_name(s):
    return s['name']

portfolio.sort(key=stock_name)

• Value returned by key func determines result

42

[{'name': 'AA', 'price': 32.2, 'shares': 100},
 {'name': 'CAT', 'price': 83.44, 'shares': 150},
 {'name': 'GE', 'price': 40.37, 'shares': 95},
 {'name': 'IBM', 'price': 91.1, 'shares': 50},
 {'name': 'IBM', 'price': 70.44, 'shares': 100},
 {'name': 'MSFT', 'price': 51.23, 'shares': 200},
 {'name': 'MSFT', 'price': 65.1, 'shares': 50}]

51



Copyright (C) 2016,  http://www.dabeaz.com 2-

Callback Functions

• Callback functions are often short one-line 
functions that are only used for that one 
operation (e.g., sorting)

• Programmers often ask for a short-cut

• For example, is there some shorter way to 
specify the custom processing for sort()?

43

Copyright (C) 2016,  http://www.dabeaz.com 2-

Anonymous Functions
• lambda expression

portfolio.sort(key=lambda s: s['name'])

• Creates an unnamed function that evaluates a 
single expression

# Same as
def stock_name(s): 
    return s['name']

portfolio.sort(key=stock_name)

44

• The above code is a shorter version of this

52



Copyright (C) 2016,  http://www.dabeaz.com 2-

Using lambda

• lambda is highly restricted

• Only a single expression is allowed and you 
can't use statements such as if, while, for, etc.

• Most common use is with sort()

• Sometimes seen with min(), max(), and other 
data handling functions

45

Copyright (C) 2016,  http://www.dabeaz.com 2-

Exercise 2.5

Time : 10 minutes

46

53



Copyright (C) 2016,  http://www.dabeaz.com 2-

List Comprehensions
• Creates a new list by applying an operation 

to each element of a sequence.
>>> a = [1, 2, 3, 4, 5]
>>> b = [2*x for x in a]
>>> b
[2, 4, 6, 8, 10]
>>>

• Another example:
>>> names = ['IBM', 'YHOO', 'CAT']
>>> a = [name.lower() for name in names]
>>> a
['ibm', 'yhoo', 'cat']
>>>

47

Copyright (C) 2016,  http://www.dabeaz.com 2-

List Comprehensions

• A list comprehension can also filter

>>> f = open('stockreport.csv', 'r')
>>> goog = [line for line in f if 'GOOG' in line]
>>>

>>> a = [1, -5, 4, 2, -2, 10]
>>> b = [2*x for x in a if x > 0]
>>> b
[2,8,4,20]
>>>

• Another example: lines containing a substring

48

54



Copyright (C) 2016,  http://www.dabeaz.com 2-

List Comprehensions
• General syntax

[expression for name in sequence if condition]

• What it means
result = []
for name in sequence:
    if condition:
       result.append(expression)

• Can be used anywhere a sequence is expected
>>> a = [1, 2, 3, 4]
>>> sum([x*x for x in a])
30
>>>

49

Copyright (C) 2016,  http://www.dabeaz.com 2-

List Comp: Examples

• List comprehensions are hugely useful

• Collecting the values of a specific field
stocknames = [s['name'] for s in portfolio]

• Performing database-like queries
a = [s for s in portfolio if s['price'] > 100
                         and s['shares'] > 50 ]

• Quick mathematics over sequences

cost = sum([s['shares']*s['price'] for s in portfolio])

50

55



Copyright (C) 2016,  http://www.dabeaz.com 2-

Set/Dict Comprehensions
• List comprehension

>>> [ s['name'] for s in portfolio ]
[ 'AA', 'IBM', 'CAT', 'MSFT', 'GE', 'MSFT', 'IBM ' ]
>>>

51

• Set comprehension (eliminate duplicates)

>>> { s['name']: 0 for s in portfolio }
{ 'GE': 0, 'IBM': 0, 'CAT': 0, 'AA': 0, 'MSFT': 0 }
>>>

>>> { s['name'] for s in portfolio }
{ 'GE', 'IBM', 'CAT', 'AA', 'MSFT' }
>>>

• Dict comprehension (make key/value pairs)

Copyright (C) 2016,  http://www.dabeaz.com 2-

Exercise 2.6

Time : 15 Minutes

52

56



Copyright (C) 2016,  http://www.dabeaz.com 2-

Generator Expressions

• A variant of a list comprehension that 
produces the results incrementally 

• Just slightly different syntax (parentheses)

53

nums = [1,2,3,4]
squares = (x*x for x in nums)

• To get the results, you use a for-loop
for n in squares:
    ...

Copyright (C) 2016,  http://www.dabeaz.com 2-

Generators
• Unlike a list, a generators can only be used 

once (afterwards, they're useless)

• Example:

54

>>> nums = [1,2,3,4]
>>> squares = (x*x for x in nums)
>>> for n in squares:
        print(n, end=' ')

1 4 9 16
>>> for n in squares:
        print(n, end=' ')

>>>
notice no output (spent)

57



Copyright (C) 2016,  http://www.dabeaz.com 2-

Using Generators
• Generators are useful in contexts where 

the result is only going to be used once 
and thrown away

• For example:

55

def sumsquares(nums):
  squares = (x*x for x in nums)

    total = sum(squares)
    return total

• Observe: squares is just some temporary 
value--no need to make a full list

Copyright (C) 2016,  http://www.dabeaz.com 2-

Generator Arguments
• Generators expressions are sometimes 

embedded as the argument of functions 
that consume the values in a sequence 

56

sum(x*x for x in nums)

print(','.join(str(x) for x in items))

if any(name.endswith('.py') for name in filenames):
     ...

• It looks funny at first, but this defines a 
generator expression which is passed as 
the input sequence to the function

58



Copyright (C) 2016,  http://www.dabeaz.com 2-

Generator Arguments
• When embedded as a function argument, 

it acts as a kind of data filter/transform

57

nums

• Critical point : Data is processed one 
item at a time--the extra step doesn't 
create a temporary list

nums = [1,2,3,4]
sum(x*x for x in nums)

x*x sum

Copyright (C) 2016,  http://www.dabeaz.com 2-

Generator Functions
• A function that feeds iteration

58

def squares(nums):
    for x in nums:
        yield x*x      # Emit a value

• To get the results, you use a for-loop

for n in squares:
    ...

• This a more general form that can be used if 
the iteration processing is more complicated

59



Copyright (C) 2016,  http://www.dabeaz.com 2-

Exercise 2.7

Time : 15 Minutes

59

Copyright (C) 2016,  http://www.dabeaz.com 2-

Secrets of the Builtins

• Programmers use the built-in types without 
giving them much thought

• However, they have some subtle behavior 
that is worth knowing about

• Especially if you want to write better code

60

60



Copyright (C) 2016,  http://www.dabeaz.com 2-

Object Representation
• Objects are often larger than you think

b = 42

61

a = 4.2

type
refcount
size

int

float

1

1
4.2

42

type
refcount
value

• May vary in size (depending on contents)

digits (30 bit chunks)
1

c = 4294967295 type
refcount
size

int
1

1073741823

2
3

(24 bytes)

(28 bytes)

(32 bytes)

digits (30 bit chunks) = 3*2**30 +
   1073741823

Copyright (C) 2016,  http://www.dabeaz.com 2-

Object Sizes

62

• Use sys.getsizeof(obj) to investigate

• Example:
>>> import sys
>>> sys.getsizeof(4.2)
24
>>> sys.getsizeof(42)
28
>>> sys.getsizeof('hello world')
60
>>>

• This partly explains the large memory use in the 
first exercise (there's a lot of extra overhead)

61



Copyright (C) 2016,  http://www.dabeaz.com 2-

Container Representation
• Container objects only hold references 

(pointers) to their stored values

items = [a, b, c, d, e]        # A list

63

pointer array

a b c d e

• All operations involving the container internals 
only manipulate the pointers (not the objects)

Copyright (C) 2016,  http://www.dabeaz.com 2-

Memory Requirements
• Minimal storage requirements (64-bit)

• Tuple : 48 bytes + 8 bytes/object

• List : 64 bytes + 8 bytes/object

• Set : 224 bytes + 16 bytes/object

• Dict: 288 bytes + 24 bytes/object

• Instance: 64 bytes + size of dict

• Note: Minimal space for sets/dicts already 
allow up to 5 objects to be stored

64

62



Copyright (C) 2016,  http://www.dabeaz.com 2-

Over-allocation
• All mutable containers (lists, dicts, sets) 

tend to over-allocate memory so that there 
are always some free slots available

65

• This is a performance optimization

• Goal is to make appends, insertions fast

list
used reserved

Copyright (C) 2016,  http://www.dabeaz.com 2-

Example : List Memory
• Example of list memory allocation

66

items = []
items.append(1)
items.append(2)
items.append(3)
items.append(4)

1
1 2
1 2 3
1 2 3 4

1 2 3 4 5
1 2 3 4 5 6

1 2 3 4 5 6 7

items.append(5)
items.append(6)
items.append(7)

reserved 
space

• Extra space means that most append() 
operations are very fast (space is already 
available, no memory allocation required)

63



Copyright (C) 2016,  http://www.dabeaz.com 2-

Example : Dict Memory
• Example of dict memory allocation

67

d = {}
d[k1] = v1
d[k2] = v2
d[k3] = v3
d[k4] = v4
d[k5] = v5

e1e2 e3 e4e5

initial allocation (8 slots)

d[k6] = v6 e1e2 e3
e4

e5
e6

expansion (16 slots)

e4=k4:v4

• On Python 2.X, growth is factor 4

Copyright (C) 2016,  http://www.dabeaz.com 2-

Container Growth

• Memory use of containers grows in proportion 
to the number of stored values

• Lists : Space increases by ~12.5% when full

• Sets : Space increases by factor 4 when 2/3 full

• Dicts : Space increases by a factor 2 when 2/3 
full (factor 4 on Python 2.X)

68

64



Copyright (C) 2016,  http://www.dabeaz.com 2-

Memory and Instances
• Growth of dictionaries is of particular 

interest if you are using a lot of classes

• Each instance gets its own dictionary

69

0 - 5  attributes  (288 bytes)
6 - 10 attributes  (480 bytes)

• Fairly big jump in memory requirements once 
you go above 5 instance attributes

• Note: This is why you might use __slots__ or 
namedtuple as an alternative

Copyright (C) 2016,  http://www.dabeaz.com 2-

Set/Dict Hashing
• Sets and dictionaries are based on hashing

• Keys are used to determine an integer 
"hashing value" (__hash__() method)

70

a = 'Python'
b = 'Guido'
c = 'Dave'

>>> a.__hash__()
-539294296
>>> b.__hash__()
1034194775
>>> c.__hash__()
2135385778

• Value used internally (implementation detail)

65



Copyright (C) 2016,  http://www.dabeaz.com 2-

Key Restrictions

• Sets/dict keys restricted to “hashable” objects
>>> a = {'IBM','AA','AAPL'}
>>> b = {[1,2],[3,4]}
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
>>> 

71

• This usually means you can only use strings, 
numbers, or tuples (no lists, dicts, sets, etc.)

Copyright (C) 2016,  http://www.dabeaz.com 2-

Dict Storage Order

• Here's how hashing works:

72

s = {
  'name': 'GOOG',
  'shares': 100,
  'price': 490.1
}

15034981
128723118
-1236194358

'name','GOOG'

'shares',100

'price',490.1

% size

5
6
2

__hash__()
0
1
2
3
4
5

6
7

dict storage

• Printing shows storage order
>>> s
{'price': 490.1, 'name': 'GOOG', 'shares': 100}
>>>

66



Copyright (C) 2016,  http://www.dabeaz.com 2-

Collision Resolution
• Index is perturbed until an open slot found

73

key='name'

i, h = perturb(i, h, size) 

i = 7, 6, 1, 4, 5, 2, 3, 0, ...

h = key.__hash__() -> 15034981
i = h % size -> 5

0
1
2
3
4
5

6
7

dict storage

OCCUPIED
• Recurrence

• Every slot is tried eventually

• Works better if many open slots available

Copyright (C) 2016,  http://www.dabeaz.com 2-

Exercise 2.8

Time : 10 Minutes

74

67



Copyright (C) 2016,  http://www.dabeaz.com 2-

Final details on objects

• Variable assignment

• Copying

• Type checking

75

Copyright (C) 2016,  http://www.dabeaz.com 2-

Understanding Assignment
• Many operations in Python are related to 

"assigning" or "storing" values

76

a = value            # Assignment to a variable
s[n] = value         # Assignment to an list
s.append(value)      # Appending to a list
d['key'] = value     # Adding to a dictionary

• A caution : assignment operations never 
make a copy of the value being assigned

• All assignments are merely reference copies 
(or pointer copies if you prefer)

68



Copyright (C) 2016,  http://www.dabeaz.com 2-

Assignment Example
• Consider this code fragment:

77

a = [1,2,3]
b = a
c = [a,b]

• A picture of the underlying memory

[1,2,3]
"a"

"b"

"c" [•, •]

ref = 4

There is only one list object 
[1,2,3], but there are four 
different references to it.

Copyright (C) 2016,  http://www.dabeaz.com 2-

Assignment Caution
• Modifying a value affects all references

78

>>> a.append(999)
>>> a
[1,2,3,999]
>>> b
[1,2,3,999]
>>> c
[[1,2,3,999], [1,2,3,999]]
>>>

• Notice how a change to the original list 
shows up everywhere else (yikes!)

• This is because no copies were ever made--
everything is pointing at the same thing

69



Copyright (C) 2016,  http://www.dabeaz.com 2-

Reassigning Values
• Reassigning a value never overwrites the 

memory used by the previous value

a = [1,2,3]
b = a

[1,2,3]
"a" ref = 2

a = [4,5,6]

"b"

ref = 1

ref = 1

79

"b"

"a"

• Key point: the name points to a different object

[1,2,3]

[4,5,6]

Copyright (C) 2016,  http://www.dabeaz.com 2-

Identity and References
• Use the "is" operator to check if two 

values are exactly the same in memory
>>> a = [1,2,3]
>>> b = a
>>> a is b
True
>>>

80

• Every object also has an integer identifier

>>> id(a)
2774760
>>> id(b)
2774760
>>> 

The object identifier is kind of like 
a pointer.  If two names have the 
same id value, they're referring to 

the same object.

70



Copyright (C) 2016,  http://www.dabeaz.com 2-

Exploiting Immutability
• Immutable values can be safely shared

81

portfolio = [
  {'name': 'AA', 'price': 32.2, 'shares': 100},
  {'name': 'IBM', 'price': 91.1, 'shares': 50},
  {'name': 'CAT', 'price': 83.44, 'shares': 150},
  {'name': 'MSFT', 'price': 51.23, 'shares': 200},
  {'name': 'GE', 'price': 40.37, 'shares': 95},
  {'name': 'MSFT', 'price': 65.1, 'shares': 50},
  {'name': 'IBM', 'price': 70.44, 'shares': 100}
]

'name'
ref = 7

'MSFT'
ref = 2

• Sharing can save significant memory

Copyright (C) 2016,  http://www.dabeaz.com 2-

Shallow Copies
• Containers have methods for copying

>>> a = [2,3,[100,101],4]
>>> b = list(a)             # Make a copy
>>> a is b
False

• However, items are copied by reference
>>> a[2].append(102)
>>> b[2]
[100,101,102]
>>> 100 101 1022 3 4

a

b
This inner list is
still being shared

82

• Known as a "shallow copy"

71



Copyright (C) 2016,  http://www.dabeaz.com 2-

Deep Copying

• Use the copy module
>>> a = [2,3,[100,101],4]
>>> import copy
>>> b = copy.deepcopy(a)
>>> a[2].append(102)
>>> b[2]
[100,101]
>>>

• Sometimes you need to makes a copy of an 
object and all objects contained within it

83

• This is the only safe way to copy something

Copyright (C) 2016,  http://www.dabeaz.com 2-

Names, Values, Types
• Names do not have a "type"--it's just a name

• However, values do have an underlying type
>>> a = 42
>>> b = 'Hello World'
>>> type(a)
<class 'int'>
>>> type(b)
<class 'str'>

• type() function will tell you what it is

• The type name is usually a function that 
creates or converts a value to that type

>>> str(42)
'42'

84

72



Copyright (C) 2016,  http://www.dabeaz.com 2-

Type Checking

• How to tell if an object is a specific type
if isinstance(a,list):    # Check if list
    print('a is a list')

• Checking for one of many types
if isinstance(a,(list,tuple)):
    print('a is a list or tuple')

85

• Advice: Don't go overboard with checking

Copyright (C) 2016,  http://www.dabeaz.com 2-

Everything is an object

• Numbers, strings, lists, functions, 
exceptions, classes, instances, etc...

• All objects are said to be "first-class"

• Meaning:  All objects that can be named can 
be passed around as data, placed in 
containers, etc., without any restrictions.

• There are no "special" kinds of objects

86

73



Copyright (C) 2016,  http://www.dabeaz.com 2-

Example: Emulating Cases

if op == '+':
    r = add(x, y)
elif op == '-':
    r = sub(x, y):
elif op == '*':
    r = mul(x, y):
elif op == '/':
    r = div(x, y):

87

A big conditional 
with many cases

Reformulation using a 
dict of functions

ops = {
  '+' : add,
  '-' : sub,
  '*' : mul,
  '/' : div
}

r = ops[op](x,y)

• Key idea: Can make data structures from anything

Copyright (C) 2016,  http://www.dabeaz.com 2-

Final Words

• Knowing how to effectively utilize Python's 
built-in types is an essential building block of 
writing solid (and efficient) code

• Considerable effort has gone into making 
Python's built-in types efficient

• You are unlikely to create a better solution

88

74



Copyright (C) 2016,  http://www.dabeaz.com 2-

More Information

• A great source of information and recipes is 
the Python Cookbook (both the O'Reilly 
book and online)

89

http://code.activestate.com/recipes/langs/python/

• Try to find just about any Python paper or 
presentation by Raymond Hettinger (Python 
data structure expert extraordinaire)

Copyright (C) 2016,  http://www.dabeaz.com 2-

Exercise 2.9

Time : 15 Minutes

90

75



Copyright (C) 2016,  http://www.dabeaz.com 3-

Classes and Objects

1

Section 3

Copyright (C) 2016,  http://www.dabeaz.com 3-

When to use Objects?

• Object oriented programming is largely 
concerned with the modeling of "behavior." 

• An "object" consists of some internal state, 
but more importantly, has methods that make 
it do various things.

• The methods give an object its personality

2

76



Copyright (C) 2016,  http://www.dabeaz.com 3-

An Example

• Data

3

host = ('www.python.org', 80)

• Behavior
c = Connection('www.python.org',80)
c.open()
c.send(data)
c.recv()
c.close()

• Data and behavior are bound together

Copyright (C) 2016,  http://www.dabeaz.com 3-

The class statement

• Use 'class' to define a new object
class Circle(object):
   def __init__(self, radius):
       self.radius = radius
   def area(self):
       return math.pi * (self.radius ** 2)
   def perimeter(self):
       return 2 * math.pi * self.radius

• What is a class?

• Mostly, it's a set of functions that carry out 
various operations on so-called "instances"

4

77



Copyright (C) 2016,  http://www.dabeaz.com 3-

Instances

• Instances are the actual "objects" that you 
manipulate in your program

• Created by calling the class as a function

• Emphasize:  The class statement is just the 
definition (it does nothing by itself)

5

>>> c = Circle(4.0)
>>> d = Circle(5.0)
>>>

Copyright (C) 2016,  http://www.dabeaz.com 3-

Instance Data
• Each instance has its own local data

6

>>> c.radius
4.0
>>> d.radius
5.0

• This data is initialized by __init__()
class Circle(object):
    def __init__(self, radius):
         self.radius = radius

Any value stored on 
"self" is instance data

• There are no restrictions on the total 
number or type of attributes stored  

78



Copyright (C) 2016,  http://www.dabeaz.com 3-

Instance Methods
• Functions applied to instances of an object

class Circle(object):
    ...
    def area(self):
        return math.pi * (self.radius ** 2)

• By convention, the instance is called "self"

• The object is always passed as first argument
>>> c.area()

def area(self):
    ...

The name is unimportant---the object is always passed as the first 
argument.  It is simply Python programming style to call this 
argument "self."   

7

Copyright (C) 2016,  http://www.dabeaz.com 3-

Attributes

• A word on terminology

• "Attribute" is anything accessed via (.)

>>> c.radius            # Attribute of an instance
4.0

>>> Circle.area         # Attribute of a class
<function Circle.area at 0x10e7f6400>

>>> import math
>>> math.pi             # Attribute of a module

8

• Don't read too much into it

79



Copyright (C) 2016,  http://www.dabeaz.com 3-

History Lesson
• Python classes were one of the last major 

features implemented in the language

• Design goals included no changes in syntax 
(other than the class statement itself) and no 
changes to function scoping rules

• Hence : Instance methods are normal 
function definitions that simply receive the 
instance as the first argument (self)

• That's it

9

Copyright (C) 2016,  http://www.dabeaz.com 3-

Odd Class Scoping
• Caution: Classes do not define a scope

def bar(): 
    print 'bar'

class Foo(object):
    def bar(self):
        print 'Foo.bar'
    def spam(self):
        bar()           # Calls global function bar()
        self.bar()      # Method bar() of self

• If want to operate on an instance, you always 
have to refer to it explicitly (e.g., self)

10

80



Copyright (C) 2016,  http://www.dabeaz.com 3-

Exercise 3.1

11

Time : 10 Minutes

Copyright (C) 2016,  http://www.dabeaz.com 3-

Manipulating Instances

• There are only three operations on instances
obj.attr            # Get an attribute
obj.attr = value    # Set an attribute
del obj.attr        # Delete an attribute

12

• Attributes can be freely added and deleted 
after an instance is created
>>> c = Circle(2.0)
>>> c.radius
2.0
>>> c.color = 'red'      # Add an attribute
>>> del c.radius         # Delete an attribute
>>>

81



Copyright (C) 2016,  http://www.dabeaz.com 3-

Attribute Access Functions
• These functions may be used to manipulate 

attributes given an attribute name string
getattr(obj, 'name')          # Same as obj.name
setattr(obj, 'name', value)   # Same as obj.name = value
delattr(obj, 'name')          # Same as del obj.name
hasattr(obj, 'name')          # Tests if attribute exists

• Example:  Output
attributes = [ 'name', 'shares', 'price']
for attr in attributes:
    print(attr, '=', getattr(obj, attr))

• Note: getattr() has a useful default value arg
x = getattr(obj, 'x', None)

13

Copyright (C) 2016,  http://www.dabeaz.com 3-

Method Invocation
• Invoking a method is a two-step process

• Lookup:   The . operator

• Method call:  The () operator

class Circle(object):
        ...
    def area(self):
        return math.pi * (self.radius ** 2)

>>> c = Circle(2.0)
>>> a = c.area
>>> a
<bound method Circle.area of <Circle object at 0x590d0>>
>>> a()
12.566370614359172
>>>

14

Lookup

Method call

82



Copyright (C) 2016,  http://www.dabeaz.com 3-

Bound Methods
• A method that has not yet been invoked by the 

function call operator () is known as a "bound 
method"

• It operates on the instance where it originated

15

>>> c = Circle(2.0)
>>> c
<Circle object at 0x590d0>
>>> a = c.area
>>> a
<bound method Circle.area of <Circle object at 0x590d0>>
>>> a()
12.566370614359172
>>>

binding

Copyright (C) 2016,  http://www.dabeaz.com 3-

Bound Methods
• Why would you care?

• Often a source of careless non-obvious errors

16

>>> c = Circle(2.0)
>>> print('Area : %0.2f' % c.area)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: a float is required
>>>

Note missing ()

• Or devious behavior that's hard to debug
f = open(filename, 'w')
...
f.close Oops. Didn't do anything at all

83



Copyright (C) 2016,  http://www.dabeaz.com 3-

Bound Methods
• Under the covers, bound methods combine 

an instance (the "self") with a method

17

>>> c = Circle(2.0)
>>> a = c.area
>>> a
<bound method Circle.area of <Circle object at 0x590d0>>
>>> a.__self__
<Circle object at 0x590d0>
>>> a.__func__
<function area at 0x37cc30>
>>> a.__func__(a.__self__)
12.566370614359172
>>>

• Ponder it a bit, will return to it later

Copyright (C) 2016,  http://www.dabeaz.com 3-

Exercise 3.2

18

Time : 15 Minutes

84



Copyright (C) 2016,  http://www.dabeaz.com 3-

More on Class Definitions
• A class contains definitions that are shared 

by all instances of the class
class Circle(object):
   def __init__(self, radius):
       self.radius = radius
   def area(self):
       return math.pi * (self.radius ** 2)
   def perimeter(self):
       return 2 * math.pi * self.radius

19

• Shared : Defined once, used by all instances

• Example : There is one area() function that 
gets used by all instances created

Copyright (C) 2016,  http://www.dabeaz.com 3-

Class Variables
• Classes may also define variables

• Known as "class variables"
class Circle(object):
   color = 'black'
   def __init__(self, radius):
       self.radius = radius
   ...

20

• There are two access routes
>>> Circle.color
'black'
>>> c = Circle(2.0)
>>> c.color
'black'
>>>

(On the class itself)

(On an instance of the class)

85



Copyright (C) 2016,  http://www.dabeaz.com 3-

Using Class Variables
• Often used for settings applied to all instances

class Date(object):
   datefmt = '{year}-{month}-{day}'
   def __init__(self, year, month, day):
       self.year = year
       self.month = month
       self.day = day
   def output(self):
       print(self.datefmt.format(year=self.year,
                                 month=self.month,
                                 day=self.day))

21

• Possibly changed via inheritance
class USDate(Date):
   datefmt = '{month}/{day}/{year}'

Copyright (C) 2016,  http://www.dabeaz.com 3-

Class Methods

• A method that operates on the class itself
class Foo(object):
    @classmethod
    def bar(cls):
        print('Foo.bar', cls)

22

• It's invoked on the class, not an instance
>>> Foo.bar()
Foo.bar, <class '__main__.Foo'>
>>>

• The class is passed as the first argument

Foo.bar() @classmethod
def bar(cls):
    ...

86



Copyright (C) 2016,  http://www.dabeaz.com 3-

Using Class Methods
• Class methods are often used as a tool for 

defining alternate initializers

23

class Date(object):
    def __init__(self, year, month, day):
        self.year  = year
        self.month = month
        self.day   = day
    @classmethod
    def today(cls):
        tm = time.localtime()
        return cls(tm.tm_year, tm.tm_mon, tm.tm_mday) 

d = Date.today()               

Notice how the class passed 
as an argument.

Copyright (C) 2016,  http://www.dabeaz.com 3-

Using Class Methods
• Class methods solve some tricky problems 

with features like inheritance

24

class Date(object):
    ...
    @classmethod
    def today(cls):
        tm = time.localtime()
        return cls(tm.tm_year, tm.tm_mon, tm.tm_mday) 

class NewDate(Date):
    ...

d = NewDate.today()

Gets the correct class
(e.g., NewDate)

87



Copyright (C) 2016,  http://www.dabeaz.com 3-

Static Methods
• A function that's defined as part of a class, but 

does not operate on instances or the class
class Foo(object):
    @staticmethod
    def bar():
        print('Foo.bar')

25

• Example:
>>> Foo.bar()
Foo.bar
>>>

• Notice: There is no hidden self argument

Copyright (C) 2016,  http://www.dabeaz.com 3-

Using Static Methods

• Uses vary:

• Utility functions used by various methods

• Instance management/tracking

• Finalization, resource management

• Certain design patterns

• Might improve code clarity--grouping related 
functionality together within a class

26

88



Copyright (C) 2016,  http://www.dabeaz.com 3-

Exercise 3.3

27

Time : 10 Minutes

Copyright (C) 2016,  http://www.dabeaz.com 3-

Classes and Encapsulation

• One of the primary roles of a class is to 
encapsulate data and internal 
implementation details of an object

• However, a class also defines a "public" 
interface that the outside world is supposed 
to use to manipulate the object

• This distinction between implementation 
details and the public interface is important

28

89



Copyright (C) 2016,  http://www.dabeaz.com 3-

Python Encapsulation

• Python relies on programming conventions to 
indicate the intended use of something

• Typically, this is based on naming

• There is a general attitude that it is up to the 
programmer to observe the rules as opposed to 
having the language enforce rules

29

Copyright (C) 2016,  http://www.dabeaz.com 3-

Private Attributes
• Any attribute name with a leading _ is 

considered to be "private"
class Person(object):
   def __init__(self, name):
       self._name = 0

30

• However, this is only a programming style

• You can still access it

>>> p = Person('Guido')
>>> p._name
'Guido'
>>> p._name = 'Dave'
>>>

90



Copyright (C) 2016,  http://www.dabeaz.com 3-

Private Attributes
• Variant : Attribute names with two leading _

class Person(object):
   def __init__(self, name):
       self.__name = name
   • This kind of attribute is "more private"
>>> p = Person('Guido')
>>> p.__name
AttributeError: 'Person' object has no attribute '__name'
>>> 

• This is actually just a name mangling trick
>>> p = Person('Guido')
>>> p._Person__name
'Guido'
>>> 

31

Copyright (C) 2016,  http://www.dabeaz.com 3-

Private Attributes

32

• Discussion: What style to use?

• Most experienced Python programmers seem 
to use a single underscore

• That said, double underscores offer some 
benefits if using a lot of inheritance (attributes 
not visible in subclasses)

• Your mileage might vary...

91



Copyright (C) 2016,  http://www.dabeaz.com 3-

Problem: Simple Attributes
• Consider the following class

33

class Stock(object):
    def __init__(self, name, shares, price):
        self.name = name
        self.shares = shares
        self.price = price

s = Stock('GOOG', 100, 490.1)
s.shares = 50

• Suppose you later wanted to add validation
s.shares = '50'    # --> TypeError

• How would you do it?

Copyright (C) 2016,  http://www.dabeaz.com 3-

Managed Attributes
• You might introduce accessor methods

34

class Stock(object):
    def __init__(self, name, shares, price):
        self.name = name
        self.set_shares(shares)
        self.price = price

    def get_shares(self):
        return self._shares

    def set_shares(self, value):
        if not isinstance(value, int): 
             raise TypeError('Expected an int')
        self._shares = value

• Too bad this breaks all existing code
s.shares = 50 s.set_shares(50)

functions that layer get/
set operations on top of 

a private attribute

92



Copyright (C) 2016,  http://www.dabeaz.com 3-

Properties
• An alternative approach to accessor methods

35

class Stock(object):
    def __init__(self, name, shares, price):
        self.name = name
        self.shares = shares
        self.price = price

    @property
    def shares(self):
        return self._shares

    @shares.setter
    def shares(self, value):
        if not isinstance(value, int):
            raise TypeError('Expected int')
        self._shares = value

• The syntax is a little jarring at first

Copyright (C) 2016,  http://www.dabeaz.com 3-

class Stock(object):
    def __init__(self, name, shares, price):
        self.name = name
        self.shares = shares
        self.price = price

    @property
    def shares(self):
        return self._shares

    @shares.setter
    def shares(self, value):
        if not isinstance(value, int):
            raise TypeError('Expected int')
        self._shares = value

Properties
• Normal attribute access triggers the methods

36

• No changes needed to other source code

>>> s = Stock(...)
>>> s.shares   
100       
>>> s.shares = 50
>>>

get

set

93



Copyright (C) 2016,  http://www.dabeaz.com 3-

Properties
• You don't change existing attribute access

37

class Stock(object):
    def __init__(self, name, shares, price):
        ...
        self.shares = shares
        ...
    @property
    def shares(self):
        return self._shares

    @shares.setter
    def shares(self, value):
        if not isinstance(value, int):
            raise TypeError('Expected int')
        self._shares = value

assignment 
calls the setter

• Common confusion: property vs private name

Copyright (C) 2016,  http://www.dabeaz.com 3-

Properties
• Properties are also useful if you are creating 

objects where you want to have a very 
consistent user interface 

• Example : Computed data attributes

38

class Circle(object):
    def __init__(self, radius):
        self.radius = radius
    @property
    def area(self):
        return math.pi * (self.radius ** 2)
    @property
    def perimeter(self):
        return 2 * math.pi * self.radius

94



Copyright (C) 2016,  http://www.dabeaz.com 3-

Properties

• Example use:

39

>>> c = Circle(4)
>>> c.radius
4
>>> c.area
50.26548245743669
>>> c.perimeter
25.132741228718345

• Commentary : Notice how there is no 
obvious difference between the attributes as 
seen by the user of the object 

Instance Variable

Computed Properties

Copyright (C) 2016,  http://www.dabeaz.com 3-

__slots__ Attribute
• You can restrict the set of attribute names

class Point(object):
   __slots__ = ('x', 'y')
   ...

• Produces errors for other attributes
>>> p = Point()
>>> p.x = 3
>>> p.y = 20
>>> p.z = 1
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
AttributeError: 'Point' object has no attribute 'z'

• This is a performance optimization (uses less 
memory, runs faster)

40

95



Copyright (C) 2016,  http://www.dabeaz.com 3-

__slots__ Cautions

• slots should only be used sparingly

• Be aware that it's presence can cause strange 
interaction with other parts of Python that 
are related to objects

• Advice : Do not use it except with classes 
that are simply going to serve as simple data 
structures

41

Copyright (C) 2016,  http://www.dabeaz.com 3-

Commentary
• The features described so far cover virtually 

everything that you will see in most Python 
class definitions

• Essential pieces

• Instance data (assignment in __init__)

• Methods (instance, static, class)

• Properties

• Private attributes, __slots__

42

96



Copyright (C) 2016,  http://www.dabeaz.com 3-

Exercise 3.4

43

Time : 15 Minutes

Copyright (C) 2016,  http://www.dabeaz.com 3-

Inheritance
• A tool for specializing existing objects

class Parent(object):
    ...

class Child(Parent):
    ...

• New class called a derived class or subclass

• Parent known as base class or superclass

• Parent is specified in () after class name

44

97



Copyright (C) 2016,  http://www.dabeaz.com 3-

Inheritance

• What do you mean by "specialize?"

• Take an existing class and ...

• Add new methods

• Redefine some of the existing methods

• Add new attributes to instances

• In a nutshell: Extending existing code

45

Copyright (C) 2016,  http://www.dabeaz.com 3-

Inheritance Example

• In bill #246 of the 1897 Indiana General 
Assembly, there was text that dictated a new 
method for squaring a circle, which if adopted, 
would have equated π to 3.2.

• Fortunately, it was never adopted because an 
observant mathematician took notice...

• But, let's make a special Indiana Circle anyways...

46

98



Copyright (C) 2016,  http://www.dabeaz.com 3-

Inheritance Example
• Specializing a class

class INCircle(Circle):
    def area(self):
        return 3.2 * (self.radius**2)   

• Using the specialized version
>>> c = INCircle(4.0)   # Calls Circle.__init__
>>> c.radius
4.0
>>> c.area()            # Calls INCircle.area
51.20
>>> c.perimeter()       # Calls Circle.perimeter
25.132741228718345
>>>

47

• It's the same as Circle except for area()

Copyright (C) 2016,  http://www.dabeaz.com 3-

"is a" relationship
• Inheritance establishes a type relationship

class Shape(object):
    ...

class Circle(Shape):
    ...

>>> c = Circle(4.0)
>>> isinstance(c, Shape)
True
>>>

• Important: objects defined via inheritance are 
supposed to be interchangeable with the parent

48

99



Copyright (C) 2016,  http://www.dabeaz.com 3-

object base class
• If a class has no parent, use object as base

class Foo(object):
    ...

• object is the parent of all objects in Python 
(even if you don't specify it in Python 3)

• Note: There is some historical baggage with 
Python 2.  Inheriting from object is required to 
get a "new-style" class

49

Copyright (C) 2016,  http://www.dabeaz.com 3-

Inheritance and Overriding
• Sometimes a class extends an existing method, 

but it has to use the original implementation
class Foo(object):
    def spam(self):
        ...
    ...
class Bar(Foo):
    def spam(self):
        ...
        r = super().spam()
        ...

50

• Use super() to do it

• Caution: Python 2 is different

notice how both methods 
have the same name.

r = super(Bar, self).spam()

100



Copyright (C) 2016,  http://www.dabeaz.com 3-

Inheritance and __init__

• With inheritance, you must initialize parents
class Shape(object):
    def __init__(self):
        self.x = 0.0
        self.y = 0.0
    ...
class Circle(Shape):
    def __init__(self,radius):
        super().__init__()   # init base 
        self.radius = radius

51

• Again, you should use super() as shown 

Copyright (C) 2016,  http://www.dabeaz.com 3-

Multiple Inheritance

• You can specify multiple base classes
class Foo(object):
    ...
class Bar(object):
    ...
class Spam(Foo, Bar):
    ...

• The new class inherits features from both parents

• But there are some really tricky details (later)

• Don't do it unless you understand it

52

101



Copyright (C) 2016,  http://www.dabeaz.com 3-

Using Inheritance

• Inheritance is often used as a code 
customization/extensibility feature

• For example, certain parts of a framework 
might involve inheriting from an existing 
class and redefining a handful of methods

• Idea: you add bits and pieces to existing 
code to make it do custom processing

53

Copyright (C) 2016,  http://www.dabeaz.com 3-

Exercise 3.5

54

Time : 20 Minutes

102



Copyright (C) 2016,  http://www.dabeaz.com 3-

Special Methods
• Classes can customize almost every aspect 

of their behavior

• This is done through special methods
class Point(object):
    def __init__(self, x, y):
        ...
    def __str__(self):
        ...

• There are dozens of these methods

• Instead of showing every possible 
customization, will show essential ones

55

Copyright (C) 2016,  http://www.dabeaz.com 3-

String Conversions
• Objects have two string representations

>>> from datetime import date
>>> d = date(2012, 12, 21)
>>> print(d)
2012-12-21
>>> d
datetime.date(2012, 12, 21)
>>>

56

• str(x) - Printable output
>>> str(d)
'2012-12-21'
>>>

• repr(x) - For programmers
>>> repr(d)
'datetime.date(2012, 12, 21)'
>>>

103



Copyright (C) 2016,  http://www.dabeaz.com 3-

String Conversions
class Date(object):
   def __init__(self, year, month, day):
       self.year = year
       self.month = month
       self.day = day

   def __str__(self):
       return '%d-%d-%d' % (self.year, 
                            self.month, 
                            self.day)

   def __repr__(self):
       return 'Date(%r,%r,%r)' % (self.year,
                                  self.month,
                                  self.day)

Note: The convention for __repr__() is to return a string that, when 
fed to eval() , will recreate the underlying object.  If this is not 
possible, some kind of easily readable representation is used instead.

57

Copyright (C) 2016,  http://www.dabeaz.com 3-

Methods: Item Access
• Methods used to implement containers

len(x)           x.__len__()
x[a]             x.__getitem__(a)
x[a] = v         x.__setitem__(a,v)
del x[a]         x.__delitem__(a)
a in x           x.__contains__(a)

• Definition in a class
class Container(object):
    def __len__(self):
        ...
    def __getitem__(self,a):
        ...
    def __setitem__(self,a,v):
        ...
    def __delitem__(self,a):
        ...
    def __contains__(self,a):
        ...

58

104



Copyright (C) 2016,  http://www.dabeaz.com 3-

Methods: Mathematics
• Mathematical operators

a + b                a.__add__(b)
a - b                a.__sub__(b)
a * b                a.__mul__(b)
a / b                a.__div__(b)
a // b               a.__floordiv__(b)
a % b                a.__mod__(b)
a << b               a.__lshift__(b)
a >> b               a.__rshift__(b)
a & b                a.__and__(b)
a | b                a.__or__(b)
a ^ b                a.__xor__(b)
a ** b               a.__pow__(b)
-a                   a.__neg__()
~a                   a.__invert__()
abs(a)               a.__abs__()

• Consult reference for further details

59

Copyright (C) 2016,  http://www.dabeaz.com 3-

Instance Creation
• Instances are created in two steps

class Date(object):
    def __init__(self, year, month, day):
        self.year = year
        self.month = month
        self.day = day

d = Date(2012, 12, 21)

• Under the covers

60

d = Date.__new__(Date, 2012, 12, 21)
d.__init__(2012, 12, 21)

105



Copyright (C) 2016,  http://www.dabeaz.com 3-

Using __new__
• Sometimes you might use __new__() directly

class Date(object):
    ...
    @classmethod
    def today(cls):
         t = time.localtime()
         self = cls.__new__(cls)
         self.year = t.tm_year
         self.month = t.tm_mon
         self.day = t.tm_mday
         return self

d = Date.today()

61

• Creates an instance, but bypasses __init__()

Copyright (C) 2016,  http://www.dabeaz.com 3-

Defining __new__
• Classes may define __new__()

class A(object):
    @staticmethod
    def __new__(cls, x, y):
        ...
        return super().__new__(cls)
    def __init__(self, x, y):
        ...

62

• Not common, but sometimes used when 
altering some tricky aspect of instance creation

• Instance caching

• Immutability

106



Copyright (C) 2016,  http://www.dabeaz.com 3-

__del__ method
• Classes might define a "destructor" method

class Connection(object):
    ...
    def __del__(self):
        # Cleanup statements
        ...

• Called when the reference count reaches 0

• Confusion: Not related to “del” operator

63

c = Connection()              # refcnt = 1
d = c                         # refcnt = 2

del d       # Doesn't call d.__del__()  (refcnt = 1)
c = None    # Calls c.__del__()  (refcnt = 0)

Copyright (C) 2016,  http://www.dabeaz.com 3-

__del__ method

• Typical uses:

• Proper shutdown of system resources 
(e.g., network connections)

• Releasing locks (e.g., threading)

• Avoid defining it for any other purpose

64

107



Copyright (C) 2016,  http://www.dabeaz.com 3-

Context Managers

• For resources, consider the use of the 'with' 
statement instead of relying on __del__()

65

with obj as val:
    statements
    statements
    statements
    ...
    statements

val = obj.__enter__()

obj.__exit__(ty, val, tb)

• Allows you to customize entry/exit steps

Copyright (C) 2016,  http://www.dabeaz.com 3-

Context Managers
• Example:

66

class Manager(object):
    def __enter__(self):
        print('Entering')
        return self
    def __exit__(self, type, val, tb):
        print('Leaving')
        if type:
            print('An exception occurred')

• Example use:
>>> m = Manager()
>>> with m:
...      print('Hello World')
...
Entering
Hello World
Leaving
>>>

108



Copyright (C) 2016,  http://www.dabeaz.com 3-

Exercise 3.6

67

Time : 15 Minutes

Copyright (C) 2016,  http://www.dabeaz.com 3-

Code Reuse

• A major theme of object oriented 
programming concerns code reuse and 
making things extensible

• A big topic

• There are a number of common techniques

68

109



Copyright (C) 2016,  http://www.dabeaz.com 3-

Interfaces
• Classes often serve as a kind of design 

specification or programming interface

69

class IStream(object):
    def read(self, maxbytes=None):
        raise NotImplementedError()
    def write(self, data):
        raise NotImplementedError()

• This class isn't used directly, but is usually 
included as a base class for other objects
class UnixPipe(IStream):
    def read(self, maxbytes=None):
        ...
    def write(self, data):
        ...

Copyright (C) 2016,  http://www.dabeaz.com 3-

Abstract Base Classes
• Consider defining interfaces as an abstract 

base class (ABC) instead

70

from abc import ABC, abstractmethod

class IStream(ABC):
    @abstractmethod
    def read(self, maxbytes=None):
        pass
    @abstractmethod
    def write(self, data):
        pass

• Doesn't allow instantiation unless all of the 
abstract methods have been fully implemented

110



Copyright (C) 2016,  http://www.dabeaz.com 3-

Abstract Base Classes
• ABCs may simplify type checking

71

def write_data(data, stream):
    if not isinstance(stream, IStream):
        raise TypeError('Expected a Stream')
    ...

• ABCs catch careless usage errors
class UnixPipe(IStrem):
    def recv(self, maxbytes=None):
        ...
    def write(self, data):
        pass

>>> p = UnixPipe()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class 
UnixPipe with abstract methods read
>>>

Copyright (C) 2016,  http://www.dabeaz.com 3-

Handler Classes

• Sometimes code will implement a general 
purpose algorithm, but will defer certain steps 
to a separately supplied handler object

• Sometimes known as the "strategy" design 
pattern.

72

111



Copyright (C) 2016,  http://www.dabeaz.com 3-

Handler Classes

• Example : 

73

def print_table(records, fields, formatter):
    formatter.headings(fields)
    for r in records:
        rowdata = [getattr(r, fieldname, 'undef') 
                   for fieldname in fields]
        formatter.row(rowdata)

Calls to 
handler 
methods

• Notice how various steps of the algorithm are 
deferred to a separate handler object

Copyright (C) 2016,  http://www.dabeaz.com 3-

Handler Classes
• Handlers have their own class definition

74

class TableFormatter(object):
    def headings(self, headings):
        raise NotImplementedError
    def row(self, rowdata):
        raise NotImplementedError

• The handler only contains the methods that 
need to be implemented/customized

• Important idea : Decoupling of the class that 
produces the table from the handler methods

112



Copyright (C) 2016,  http://www.dabeaz.com 3-

Handler Classes
• Example Use 

75

class TextTableFormatter(TableFormatter):
    def headings(self, headers):
        for h in headers:
            print('%10s' % h, end=' ')
        print()
        print(('-' * 10 + ' ') * len(headers))
    def row(self, rowdata):
        for d in rowdata:
            print('%10s' % d, end=' ')
        print()

formatter = TextTableFormatter(handler)
print_table(portfolio, ['name','shares'], formatter)

Copyright (C) 2016,  http://www.dabeaz.com 3-

Commentary
• The use of handler classes is extremely 

common throughout the Python standard 
library (might be the most popular OO 
design pattern used in Python)

• Rationale : This approach provides flexibility

• Handlers are decoupled from implementation

• Allows handler code to be reused in other 
contexts (other classes can use the same 
handler objects).

76

113



Copyright (C) 2016,  http://www.dabeaz.com 3-

Classes as a Template

• A class might implement a general-
purpose algorithm, but delegate certain 
steps to a subclass

• Will illustrate with a simple example

77

Copyright (C) 2016,  http://www.dabeaz.com 3-

Template Example
• A class that parses a CSV file into a list

78

class CSVParser(object):
    def parse(self, filename):
        with open(filename) as f:
             rows = csv.reader(f)
             self.headers = next(rows)
             records = []
             for row in rows:
                 record = self.make_record(row)
                 records.append(record)
        return records

    def make_record(self, row):
        raise RuntimeError('Must implement')

• Note: Class is useless by itself

Step that 
must be 

implemented

114



Copyright (C) 2016,  http://www.dabeaz.com 3-

Template Example

• Using the template (use inheritance)

79

class DictCSVParser(DictParser):
    def make_record(self, row):
        return dict(zip(self.headers, row))

parser = DictCSVParser()
portfolio = parser.parse('portfolio.csv')

• Critical idea : User defines a small class that 
supplies the one missing piece, but most of 
the real functionality is in the base class

Copyright (C) 2016,  http://www.dabeaz.com 3-

Exercise 3.7

80

Time : 15 Minutes

115



Copyright (C) 2016,  http://www.dabeaz.com 3-

Advanced Inheritance
• Recall:  Inheritance is a tool for code reuse 

(customization and extension)

81

class Parent(object):
    def spam(self):
        ...

class Child(Parent):
    def spam(self):
        print('Different spam')
        super().spam()

• Child classes can customize their parents

• Sometimes see use of super() function (shown)

Copyright (C) 2016,  http://www.dabeaz.com 3-

Multiple Inheritance
• Classes can have multiple parents

82

class A(object):
    ...

class B(A):
    ...

class C(object):
    ...

class D(B, C):
    ...

• The child will inherit features from all parents

• But, it's a lot sneakier than this

116



Copyright (C) 2016,  http://www.dabeaz.com 3-

Cooperative Inheritance

• Python uses "cooperative multiple inheritance"

• Big idea: A child class can specifically arrange its 
parents to cooperate with each other

83

class Child(Parent1, Parent2, Parent3):
    ...

• The order of the parents has significance

• Attribute search may jump parent-to-parent

class Child(Parent1, Parent2, Parent3):
    ...

Copyright (C) 2016,  http://www.dabeaz.com 3-

Cooperative Inheritance
• Example: Consider this arrangement

84

class A(Parent):
    def spam(self):
        print('A')
        super().spam()

class B(Parent):
    def spam(self):
        print('B')
        super().spam()

class Parent(object):
    def spam(self):
        print('Parent')

• Now, this:

class Child(A,B):
    pass

>>> c = Child()
>>> c.spam()
A
B
Parent
>>>

it's gone sideways!

117



Copyright (C) 2016,  http://www.dabeaz.com 3-

Cooperative Inheritance
• There are applications

85

• You can make collections of classes that are 
meant to be stacked together to make more 
interesting things

Copyright (C) 2016,  http://www.dabeaz.com 3-

Mixin Classes

• A mixin is a class whose purpose is to add 
extra functionality to other class definitions

• Idea :  If a user implements some basic 
features in their class, a mixin can be used to 
fill out the class with extra functionality

• Sometimes used as a technique for reducing 
the amount of code that must be written 

86

118



Copyright (C) 2016,  http://www.dabeaz.com 3-

Mixin Example
• Here's a class with no notable parent

87

class LoggedMixin(object):
    def __getitem__(self, key):
        print('getitem:', key)
        return super().__getitem__(key)

• It's useless by itself
>>> d = LoggedMixin()
>>> d['spam']
getitem: spam
Traceback (most recent call last):
  File "<stdin>", line 4, in __getitem__
AttributeError: 'super' object has no attribute '__getitem__'
>>> 

• It has to be combined with another class

Copyright (C) 2016,  http://www.dabeaz.com 3-

Mixin Example
>>> class LogList(LoggedMixin, list):
        pass

>>> items = LogList(['a','b','c'])
>>> items[0]
getitem: 0
'a'
>>> 

88

• Example: mixing with a list 

• Example: mixing with a Counter
>>> from collections import Counter
>>> class LogCounter(LoggedMixin, Counter):
        pass
>>> c = LogCounter()
>>> c['spam'] += 10
getitem: spam
>>> c['spam']
getitem: spam
10

119



Copyright (C) 2016,  http://www.dabeaz.com 3-

Use of Mixins

89

• Mixin classes are sometimes used as a way to 
add optional features to more basic objects

• For example, added thread support, 
persistence, etc.

• User assembles an object from the different 
parts that they're going to use

Copyright (C) 2016,  http://www.dabeaz.com 3-

Exercise 3.8

90

Time : 15 Minutes

120



Copyright (C) 2016,  http://www.dabeaz.com 4-

Inside Python Objects

1

Section 4

Copyright (C) 2016,  http://www.dabeaz.com 4-

Overview

• Inner details on how Python objects work

• Object representation

• Attribute binding

• Type checking

• Descriptors 

• Attribute special methods

2

121



Copyright (C) 2016,  http://www.dabeaz.com 4-

Dictionaries Revisited
• A dictionary is a collection of named values

3

stock = {
          'name'   : 'GOOG',
          'shares' : 100,
          'price'  : 490.10
       }

• Dictionaries are commonly used for simple 
data structures (shown above)

• However, they are used for critical parts of the 
interpreter and may be the most important 
type of data in Python 

Copyright (C) 2016,  http://www.dabeaz.com 4-

Dicts and Objects

• User-defined objects use dictionaries

• Instance data

• Class members

• In fact, the entire object system is mostly 
just an extra layer that's put on top of 
dictionaries

• Let's take a look...

4

122



Copyright (C) 2016,  http://www.dabeaz.com 4-

Dicts and Instances
• A dictionary holds instance data (__dict__)

>>> s = Stock('GOOG',100,490.10)
>>> s.__dict__
{'name' : 'GOOG','shares' : 100, 'price': 490.10 }

• You populate this dict when assigning to self
class Stock(object):
    def __init__(self,name,shares,price):
        self.name = name
        self.shares = shares
        self.price = price 

self.__dict__

{ 
  'name' : 'GOOG',
  'shares' : 100,
  'price' : 490.10
}

instance data 5

Copyright (C) 2016,  http://www.dabeaz.com 4-

Dicts and Instances
• Critical point : Each instance gets its own 

private dictionary

s = Stock('GOOG',100,490.10)
t = Stock('AAPL',50,123.45)

6

{
   'name' : 'GOOG',
   'shares' : 100,
   'price' : 490.10
}

{
   'name' : 'AAPL',
   'shares' : 50,
   'price' : 123.45
}

• So, if you created 100 
instances of some 
class, there are 100 
dictionaries sitting 
around holding data

123



Copyright (C) 2016,  http://www.dabeaz.com 4-

Dicts and Classes
• A dictionary holds the members of a class

class Stock(object):
    def __init__(self, name, shares, price):
        self.name = name
        self.shares = shares
        self.price = price
    def cost(self):
        return self.shares * self.price
    def sell(self, nshares):
        self.shares -= nshares

7

Stock.__dict__

{
 'cost' : <function>,
 'sell' : <function>,
 '__init__' : <function>,
}

methods

Copyright (C) 2016,  http://www.dabeaz.com 4-

Instances and Classes
• Instances and classes are linked together

>>> s = Stock('GOOG', 100, 490.10)
>>> s.__dict__
{'name':'GOOG','shares':100,'price':490.10 }
>>> s.__class__
<class '__main__.Stock'>
>>>

• __class__ attribute refers back to the class

8

• The instance dictionary holds data unique to 
each instance whereas the class dictionary 
holds data collectively shared by all instances

124



Copyright (C) 2016,  http://www.dabeaz.com 4-

Instances and Classes

.__dict__ {attrs}

.__class__

.__dict__ {attrs}

.__class__

.__dict__ {attrs}

.__class__

.__dict__ {methods}

instances

class

9

Copyright (C) 2016,  http://www.dabeaz.com 4-

Attribute Access

• When you work with objects, you access 
data and methods using the (.) operator

10

• These operations are directly tied to the 
dictionaries sitting underneath the covers

x = obj.name      # Getting
obj.name = value  # Setting
del obj.name      # Deleting

125



Copyright (C) 2016,  http://www.dabeaz.com 4-

Modifying Instances
• Operations that modify an object always 

update the underlying dictionary
>>> s = Stock('GOOG',100,490.10)
>>> s.__dict__
{'name':'GOOG', 'shares':100, 'price':490.10 }
>>> s.shares = 50
>>> s.date = '6/7/2007'
>>> s.__dict__
{ 'name':'GOOG', 'shares':50, 'price':490.10,
  'date':'6/7/2007'}
>>> del s.shares
>>> s.__dict__
{ 'name':'GOOG', 'price':490.10,  'date':'6/7/2007'}
>>>

11

Copyright (C) 2016,  http://www.dabeaz.com 4-

Reading Attributes

• Attribute may exist in two places

• Local instance dictionary

• Class dictionary

• So, both dictionaries may be checked

12

• Suppose you read an attribute on an instance

x = obj.name

126



Copyright (C) 2016,  http://www.dabeaz.com 4-

Reading Attributes
• First check in local __dict__

• If not found, look in __dict__ of class

>>> s = Stock(...)
>>> s.name
'GOOG'          
>>> s.cost()
49010.0
>>>                  

s .__dict__
.__class__

{'name': 'GOOG',
 'shares': 100 }

Stock .__dict__ {'cost': <func>,
 'sell':<func>,
 '__init__':..}

1

2

13

• This lookup scheme is how the members of 
a class get shared by all instances

Copyright (C) 2016,  http://www.dabeaz.com 4-

Exercise 4.1

14

Time : 10 Minutes

127



Copyright (C) 2016,  http://www.dabeaz.com 4-

How Inheritance Works

class A(B,C):
   ...

• Classes may inherit from other classes

• Bases are stored as a tuple in each class
>>> A.__bases__
(<class '__main__.B'>,<class '__main__.C'>)
>>>

15

• This provides a link to parent classes

• This link simply extends the search process 
used to find attributes

Copyright (C) 2016,  http://www.dabeaz.com 4-

Reading Attributes
• First check in local __dict__

• If not found, look in __dict__ of class

>>> s = Stock(...)
>>> s.name
'GOOG'          
>>> s.cost()
49010.0
>>>                  

s .__dict__
.__class__

{'name': 'GOOG',
 'shares': 100 }

Stock .__dict__ {'cost': <func>,
 'sell':<func>,
 '__init__':..}

• If not found in class, look in base classes

.__bases__

look in __bases__

1

2

3

16

128



Copyright (C) 2016,  http://www.dabeaz.com 4-

Single Inheritance
• In inheritance hierarchies, attributes are 

found by walking up the inheritance tree

17

class A(object): pass
class B(A): pass
class C(A): pass
class D(B): pass
class E(D): pass

object

A

B C

D

E

e = E()
e.attr e instance

• With single 
inheritance, there is a 
single path to the top

• You stop with the 
first match

Copyright (C) 2016,  http://www.dabeaz.com 4-

The MRO
• The inheritance chain is precomputed and 

stored in an "MRO" attribute on the class
>>> E.__mro__
(<class '__main__.E'>,  <class '__main__.D'>,
 <class '__main__.B'>,  <class '__main__.A'>,  
 <type 'object'>)
>>>

• "Method Resolution Order"

• To find attributes, Python walks the MRO

• First match wins

18

129



Copyright (C) 2016,  http://www.dabeaz.com 4-

Multiple Inheritance

class A(object): pass
class B(object): pass
class C(A,B): pass
class D(B): pass
class E(C,D): pass

• Consider this hierarchy
object

A B

C D

E• What happens here?
e = E()
e.attr          

19

• A similar search process is carried out, but 
there is an added complication in that 
there may be many possible search paths

Copyright (C) 2016,  http://www.dabeaz.com 4-

Multiple Inheritance

• Python uses "cooperative multiple inheritance"

• There are some ordering rules:

20

Rule 1: Children before parents
Rule 2: Parents go in order

• Inheritance works in two directions (up the 
hierarchy, across the list of parents)

class C(A, B):
    ...

rule 1

rule 2

130



Copyright (C) 2016,  http://www.dabeaz.com 4-

Multiple Inheritance

• Multiple inheritance hierarchy is flattened 
>>> D.__mro__
(<class '__main__.D'>,  <class '__main__.B'>,
 <class '__main__.C'>,  <class '__main__.A'>,
 <type 'object'>)
>>>

• Calculated using the C3 Linearization algorithm

• A constrained merge sort of parent MROs 

• An ordering based on "the rules"

21

Copyright (C) 2016,  http://www.dabeaz.com 4-

Multiple Inheritance

22

class Base(object):
    ...

• Consider classes with a common parent

D A CB

class A(Base):
    ...

class B(Base):
    ...

class C(Base):
    ...

• All children of a common parent go first
class D(A,B,C):
    ...

BaseMRO

131



Copyright (C) 2016,  http://www.dabeaz.com 4-

Why super()?
• Always use super() when overriding methods

class A(Base):
   def spam(self):
       ...
       return super().spam()

• super() delegates to the next class on the MRO

23

A Base object
super()

A B object
super()

D C

• Tricky bit: You don't know what it is

Base

Copyright (C) 2016,  http://www.dabeaz.com 4-

super() Explained
• super() is one of the most poorly 

understood Python features

24

class A(Base):
    def spam(self):
        Base.spam(self)

class A(Base):
    def spam(self):
        super().spam()

vs.

• These two classes are not the same

• super() binds to the next implementation that 
is defined according to the instance's MRO

• It's not necessarily the immediate parent

132



Copyright (C) 2016,  http://www.dabeaz.com 4-

Designing for Inheritance
• Rule 1:  Compatible Method Arguments

25

A B Base
spam(args)

D C
spam(args) spam(args)

• Overridden methods must have a compatible 
signature across the entire hierarchy

• Remember: super() might not go to the 
immediate parent

• Tip: If there are varying method signatures, 
use keyword arguments

Copyright (C) 2016,  http://www.dabeaz.com 4-

Designing for Inheritance
• Rule 2:  Method chains must terminate

26

A B object
spam(args)

D C
spam(args) spam(args)

• You can't use super() forever--some class has 
to terminate the search chain

AttributeError

class Base(object):
    def spam(self):
        pass

• Typically the role of an abstract base class

Base
spam(args)

133



Copyright (C) 2016,  http://www.dabeaz.com 4-

Designing for Inheritance
• Rule 3:  use super() everywhere

27

A B object
spam(args)

D C

• Direct parent calls might explode heads

AttributeError

class A(Base):
    def spam(self):
        Base.spam(self)    # NO!

• If multiple inheritance is used, a direct parent 
call will probably violate the MRO

super super
Base

spam(args)

Copyright (C) 2016,  http://www.dabeaz.com 4-

More Information

• "Python's super() considered super"

28

http://rhettinger.wordpress.com/2011/05/26/
super-considered-super/

• Associated PyCon Presentation

http://pyvideo.org/video/3413/super-
considered-super

134



Copyright (C) 2016,  http://www.dabeaz.com 4-

Exercise 4.2

29

Time : 25 Minutes

Copyright (C) 2016,  http://www.dabeaz.com 4-

Dicts and Classes (Reprise)
• Recall, a dictionary holds class members

class Stock(object):
    def __init__(self, name, shares, price):
        self.name = name
        self.shares = shares
        self.price = price
    def cost(self):
        return self.shares * self.price
    def sell(self, nshares):
        self.shares -= nshares

30

Stock.__dict__

{
 'cost' : <function>,
 'sell' : <function>,
 '__init__' : <function>,
}

methods

135



Copyright (C) 2016,  http://www.dabeaz.com 4-

Reading Attributes (Reprise)
• Recall that a two-step process is used to 

locate attributes on objects

>>> s = Stock(...)
>>> s.name
'GOOG'          
>>> s.cost()
49010.0
>>>                  

s .__dict__
.__class__

{'name': 'GOOG',
 'shares': 100 }

Stock .__dict__ {'cost': <func>,
 'sell':<func>,
 '__init__':..}

1

2

31

• This is mostly correct

• Except for the extra hidden magic (not shown)

Copyright (C) 2016,  http://www.dabeaz.com 4-

Attribute Binding

• Access to attributes of classes involves one 
extra processing step

• Something known as the "descriptor protocol"

• It's so sneaky that most Python programmers 
don't even know it exists

• Yet, it holds the whole object system together

32

136



Copyright (C) 2016,  http://www.dabeaz.com 4-

Descriptor Protocol
• Whenever an attribute is accessed on a 

class, the attribute is checked to see if it is an 
object that looks like a so-called "descriptor"

• A descriptor is an object with one or more of 
the following special methods

33

d.__get__(obj, cls)         # Required
d.__set__(obj, value)       # Optional
d.__delete__(obj)           # Optional

• If a descriptor is detected, one of the above 
methods gets triggered on access

Copyright (C) 2016,  http://www.dabeaz.com 4-

Descriptor Demo
• Here is a class that implements a dummy 

descriptor (with prints for debugging)

34

class Descriptor(object):
    def __init__(self, name):
        self.name = name
    def __get__(self, instance, cls):
        print('%s:__get__' % self.name)
    def __set__(self, instance, value):
        print('%s:__set__ %s' % (self.name, value))
    def __delete__(self, instance):
        print('%s:__delete__' % self.name)

• Basically, a descriptor is just an object with  
get, set, and delete methods

137



Copyright (C) 2016,  http://www.dabeaz.com 4-

Descriptor Demo
• Descriptors are placed in class definitions

35

class Foo(object):
    a = Descriptor('a')
    b = Descriptor('b')

• Now, watch what happens on access:
>>> f = Foo()
>>> f.a
a:__get__
>>> f.a = 42
a:__set__ 42
>>> del f.a
a:__delete__
>>> f.b
b:__get__
>>> 

Copyright (C) 2016,  http://www.dabeaz.com 4-

Descriptor Demo
• Descriptors are presented with information 

about the instance, class, and values

36

class Descriptor(object):
    def __init__(self, name):
        self.name = name
    def __get__(self, instance, cls):
        print('%s:__get__' % self.name)
    def __set__(self, instance, value):
        print('%s:__set__ %s' % (self.name, value))
    def __delete__(self, instance):
        print('%s:__delete__' % self.name)

f = Foo()
f.a
f.a = 42
del f.a

• Confusion:  self is the descriptor itself, instance 
is the object it's operating on.

138



Copyright (C) 2016,  http://www.dabeaz.com 4-

Descriptor Storage
• Descriptors store and retrieve data

37

class Descriptor(object):
    def __init__(self, name):
        self.name = name                
    def __get__(self, instance, cls=None):
        return instance.__dict__[self.name] 
    def __set__(self, instance, value):
        instance.__dict__[self.name] = value 

• Example:
class Foo(object):
    a = Descriptor('a')
    b = Descriptor('b')

f = Foo()
f.a = 23     # Stores value in f.__dict__['a']

Direct manipulation of the 
instance dictionary

Copyright (C) 2016,  http://www.dabeaz.com 4-

Descriptor Binding
• Descriptors always override __dict__

38

class Foo(object):
    a = Descriptor('a')
    b = Descriptor('b')

• Modify the instance dict and try accessing
>>> f = Foo()
>>> f.__dict__['a'] = 42
>>> f.__dict__
{'a': 42}
>>> f.a
a:__get__
>>>

notice how the descriptor runs regardless 
the value in the instance dictionary

139



Copyright (C) 2016,  http://www.dabeaz.com 4-

Who Cares?
• Every major feature of classes is implemented 

using descriptors

• Instance methods

• Static methods (@staticmethod)

• Class methods (@classmethod)

• Properties (@property)

• __slots__

• Descriptors provide the glue that connects 
instances and classes together in the runtime

39

Copyright (C) 2016,  http://www.dabeaz.com 4-

Descriptors in Action

• Recall that . and () are separate operations

40

>>> s = Stock('GOOG',100,490.10)
>>> s.cost
<bound method Stock.cost of <__main__.Stock object at 
0x37e250>>
>>> s.cost()
49010.0
>>>

• Focus on that "bound method" result

• How did that get created?  Magic?

• No, a descriptor did that.

140



Copyright (C) 2016,  http://www.dabeaz.com 4-

Descriptors in Action
• Behind the scenes of method lookup

41

>>> s = Stock('GOOG',100,490.10)

>>> value = Stock.__dict__['cost']
>>> value
<function cost at 0x378770>
>>> hasattr(value,"__get__")
True
>>> result = value.__get__(s,Stock)
>>> result
<bound method Stock.cost of <__main__.Stock object at 
0x37e250>>
>>> result()
49010.0
>>>

• Functions are descriptors where __get__() 
creates the bound method object

descriptor 
check and 
invocation

class attribute 
lookup

Copyright (C) 2016,  http://www.dabeaz.com 4-

Descriptors and Properties
• Consider a class with a property attribute

42

class Foo(object):
    @property
    def name(self):
        return self._name
    @name.setter
    def name(self,value):
        self._name = value

• A property is also a descriptor
>>> f = Foo()
>>> p = Foo.__dict__['name']
>>> p
<property object at 0x3759c0>
>>> p.__set__(f,"Guido")    # Same as f.name='Guido'
>>> p.__get__(f,Foo)        # Same as f.name
'Guido'
>>> f.name
'Guido'

141



Copyright (C) 2016,  http://www.dabeaz.com 4-

Descriptors and __slots__

• Consider a class with slots

43

class Foo(object):
    __slots__ = ('x','y','z')
    ...

• Internally, an array is allocated
0 1 2

• Each slot name is used to create a  descriptor 
that simply gets or sets values in the 
appropriate array position (internals are 
implemented in C and hard to view though)

x y z

Copyright (C) 2016,  http://www.dabeaz.com 4-

Descriptor Commentary

• Descriptors are one of Python's most 
powerful customizations (you own the dot)

• Experts can create their own custom 
descriptors and use them to change what 
happens in the low levels of the object system

• Often used in advanced programming 
frameworks and as an encapsulation tool

44

142



Copyright (C) 2016,  http://www.dabeaz.com 4-

Descriptor Application

• A common use of descriptors is in describing 
data (e.g., Object Relational Mapping, etc.)

45

class Stock(object):
    name   = String('name',maxlen=8)
    shares = Integer('shares')
    price  = Real('price')

• Provide more precise control than properties. 

• Results in less repetitive code

Copyright (C) 2016,  http://www.dabeaz.com 4-

Descriptor Application

• Example descriptor code:

46

class Integer(object):
    def __init__(self, name):
        self.name = name
    def __get__(self, instance, cls):
        return instance.__dict__[self.name]
    def __set__(self, instance, value):
        if not isinstance(value, int):
            raise TypeError('Expected an integer')
        instance.__dict__[self.name] = value

• Minor note: __get__() could be omitted

143



Copyright (C) 2016,  http://www.dabeaz.com 4-

Tricky Bits with __get__
• __get__ can be accessed in two ways

47

class Foo(object):
    a = Descriptor('a')

• Through an instance (bound)
f = Foo()
f.a

• On the class definition itself (unbound)
Foo.a

• Example : Bound vs. unbound methods

Copyright (C) 2016,  http://www.dabeaz.com 4-

Tricky Bits with __get__
• Recommended __get__ implementation

48

class Descriptor(object):
    def __get__(self, instance, cls):
        if instance is None:
            # If no instance given, return the descriptor
            # object itself
            return self
        else:
            # Return the instance value
            return instance.__dict__[self.name]

• Always check for presence of an instance 
(instance). If None, return the descriptor itself

144



Copyright (C) 2016,  http://www.dabeaz.com 4-

Method Descriptors

• A weaker descriptor that only has __get__

49

• Only triggered if obj.__dict__ doesn't match

class MethodDescriptor(object):
    def __get__(self, instance, cls):
        print('Getting!')

class Foo(object):
    a = MethodDescriptor("a")

>>> f = Foo()
>>> f.a
Getting!
>>> f.__dict__['a'] = 42
>>> f.a
42
>>> Notice how the value in the 

dictionary hides the descriptor

Copyright (C) 2016,  http://www.dabeaz.com 4-

Exercise 4.3

50

Time : 15 Minutes

145



Copyright (C) 2016,  http://www.dabeaz.com 4-

Attribute Access Methods

• Classes can intercept attribute access

• Set of special methods for setting, deleting, 
and getting attributes

51

obj.x             obj.__getattribute__('x')

                  obj.__getattr__('x')
(if not found)

Get:

del obj.x         obj.__delattr__('x')

obj.x = val       obj.__setattr__('x',val)Set:

Delete:

Copyright (C) 2016,  http://www.dabeaz.com 4-

__getattribute__()

• __getattribute__(self,name)

• Called every time an attribute is read

• Default behavior looks for descriptors, 
checks the instance dictionary, checks bases 
classes (inheritance), etc.

• If it can't find the attribute after all of those 
steps, it invokes __getattr__(self,name)

52

146



Copyright (C) 2016,  http://www.dabeaz.com 4-

__getattr__() method

• __getattr__(self,name)

• A failsafe method.  Called if an attribute can't 
be found using the standard mechanism

• Default behavior is to raise AttributeError

• Sometimes customized

53

Copyright (C) 2016,  http://www.dabeaz.com 4-

__setattr__() method

• __setattr__(self,name,value)

• Called every time an attribute is set

• Default behavior checks for descriptors, 
stores values in the instance dictionary, etc.

54

147



Copyright (C) 2016,  http://www.dabeaz.com 4-

__delattr__() method

• __delattr__(self,name)

• Called every time an attribute is deleted

• Default behavior checks for descriptors and 
deletes from the instance dictionary

55

Copyright (C) 2016,  http://www.dabeaz.com 4-

Customizing Access

• A class can redefine the attribute access 
methods to implement custom processing

• The most common application of this is for 
creating wrapper objects, proxies, and other 
similar kinds of objects

56

148



Copyright (C) 2016,  http://www.dabeaz.com 4-

Example : Proxy

• Consider this class

57

class Proxy(object):
    def __init__(self,obj):
        self._obj = obj
    def __getattr__(self,name):
        print('getattr:', name)
        return getattr(self._obj, name)

• It holds an internal reference to an object

• Attribute access is redirected to held object

Copyright (C) 2016,  http://www.dabeaz.com 4-

Example : Proxy
• Example use:

58

>>> c = Circle(4.0)
>>> c.radius
4.0
>>> c.area()
50.26548245743669

>>> p = Proxy(c)
>>> p
<__main__.Proxy object at 0x37f130>
>>> p.radius
getattr: radius
4.0
>>> p.area()
getattr: area
50.26548245743669
>>>

Notice how attribute access 
gets captured by __getattr__ 

and then redirected to the 
original object

149



Copyright (C) 2016,  http://www.dabeaz.com 4-

Example: Delegation
• Example:

59

class A(object):
    def foo(self):
        print('A.foo')
    def bar(self):
        print('A.bar')

class B(object):
    def __init__(self):
        self._a = A()
    def bar(self):
        print('B.bar')
        self._a.bar()
    def __getattr__(self, name):
        return getattr(self._a, name)

>>> b = B()
>>> b.foo()
A.foo
>>> b.bar()
B.bar
A.bar
>>>

• Sometimes used as an alternative to inheritance

Copyright (C) 2016,  http://www.dabeaz.com 4-

Delegation Caution
• __getattr__ doesn't apply to special methods 

(e.g., __len__, __getitem__, etc.)

• Must delegate manually (if needed)

60

class B(object):
    def __init__(self):
        self._a = A()

    def __getitem__(self, index):
        return self._a[index]

    def __getattr__(self, name):
        return getattr(self._a, name)

150



Copyright (C) 2016,  http://www.dabeaz.com 4-

Exercise 4.4

61

Time : 20 Minutes

151



Copyright (C) 2016,  http://www.dabeaz.com 5-

Being "Pythonic"
Section 5

1

Copyright (C) 2016,  http://www.dabeaz.com 5-

Overview

• Function design

• Error handling and Logging

• Object design

• Testing

• Optimization

2

152



Copyright (C) 2016,  http://www.dabeaz.com 5-

Functions

• Functions are a basic building block

• Top-level functions in a module

• Methods of a class

• Almost all of your code will live in a function

• There is an official style guide: PEP 8

3

Copyright (C) 2016,  http://www.dabeaz.com 5-

Naming Conventions

• Functions should use lowercase names and _

4

def read_data(filename):
    ...

def readData(filename):
    ...

Yes No

• Use a leading _ for internal/private funcs
def _internal_func():
    ...

153



Copyright (C) 2016,  http://www.dabeaz.com 5-

Function Design
• Functions should ideally operate on their passed 

inputs and return a proper result

5

def read_data(filename):
    records = []
    f = open(filename)
    ...
    return records

result = read_data('data.csv')

filename = 'data.csv'
records = []

def read_data():
    f = open(filename)
    ...
    records.append(r)

Yes No

• Avoid global variables

• Avoid hidden side-effects and magic

Copyright (C) 2016,  http://www.dabeaz.com 5-

Side Effects/Mutability
• Don't return a result when mutating state

6

>>> names = ['Paula','Dave','Lewis','Thomas']
>>> names.sort()
>>> names
['Dave', 'Lewis', 'Paula', 'Thomas']
>>>

• Contrast with string methods
>>> s = 'hello world'
>>> s.replace('hello', 'hello cruel')
'hello cruel world'
>>> s
'hello world'
>>>

• You want a clear indication of mutability 

notice: no result
is returned

154



Copyright (C) 2015,  http://www.dabeaz.com 7-

Argument Passing

• Arguments are passed as objects, never copied

• If you pass a mutable object (list, dict, etc.), 
changes affect the original value

7

def foo(items):
    items.append(4)

nums = [1, 2, 3]
foo(nums)
print(nums)   # [1, 2, 3, 4]

• Rule of thumb: Don't modify inputs

Copyright (C) 2015,  http://www.dabeaz.com 7-

Optional Arguments
• Sometimes you want an optional argument

def read_data(filename, debug=False):
    ...

d = read_data('data.csv')
e = read_data('data.csv', debug=True)

• If an argument value is assigned, the 
argument is optional in function calls

8

• Note : Arguments with values must appear at 
the end of the argument list (all non-optional 
arguments go first)

155



Copyright (C) 2015,  http://www.dabeaz.com 7-

Keyword Arguments

• Prefer keywords for passing optional arguments
a = read_data('data.csv', debug=True)    # YES!
b = read_data('data.csv', True)          # NO!

9

• Keywords result in better code clarity

• You can force the use of keyword arguments
def read_data(filename, *, debug=False):
    ...

All arguments after the * 
must be given as by keyword

Copyright (C) 2015,  http://www.dabeaz.com 7-

Default Value Binding
• Caution: Default values get set once at the 

time of function definition
DEBUG=False
def read_data(filename, debug=DEBUG):
    print(filename, debug)

>>> read_data('data.csv')
data.csv False
>>> DEBUG=True
>>> read_data('data.csv')
data.csv False
>>>

• Once a function is defined, you can't change 
the default value

10

156



Copyright (C) 2015,  http://www.dabeaz.com 7-

Default Values
• Don't use mutable values as defaults

def spam(a, items=[]):
    items.append(a)
    return items

• The default value is only created once for 
the whole program--mutations are "sticky"

11

>>> spam(1)
[1]
>>> spam(2)
[1, 2]
>>> spam(3)
[1, 2, 3]

• A really bad idea if the default value escapes 
the function (e.g., returned as a result)

Copyright (C) 2015,  http://www.dabeaz.com 7-

Default Values
• Advice: Only use immutable values such as 

None, True, False, numbers, or strings
def spam(a, items=None):
    if items is None:
       items = []
    items.append(a)
    return items

• This avoids the problem of the default being 
modified by accident

12

>>> spam(1)
[1]
>>> spam(2)
[2]
>>>

157



Copyright (C) 2016,  http://www.dabeaz.com 5-

Doc Strings
• Functions should have a doc string

13

def add(x, y):
    '''
    Adds x and y together.
    '''
    return x + y

• Feeds the help() command and development tools

• Important: there are no type signatures or other 
details to help people reading your code. The 
more information you provide, the better.  

Copyright (C) 2016,  http://www.dabeaz.com 5-

Type Hints (PEP 484)
• Optional annotations can indicate types

14

def add(x:int, y:int) -> int:
    '''
    Adds x and y together.
    '''
    return x + y

• The type hints do nothing, but may be useful for 
code checkers, documentation, IDEs, etc.
>>> help(add)
Help on function add in module __main__:

add(x:int, y:int) -> int
    Adds x and y

158



Copyright (C) 2016,  http://www.dabeaz.com 5-

Assertions/Contracts
• Assertions are runtime checks

15

def add(x, y):
    '''
    Adds x and y
    '''
    assert isinstance(x, int)
    assert isinstance(y, int)
    return x + y

• Function will fail on bad input
>>> add(2, 3)
5
>>> add('2', '3')
Traceback (most recent call last):
...
AssertionError
>>>

Copyright (C) 2016,  http://www.dabeaz.com 5-

Assertions/Contracts

• Assertions are not meant to check user inputs

• Validating program invariants (internal 
conditions that must always hold true)

• Failure indicates a programming error and 
assigns blame (e.g., to the caller)

• Can be disabled (python -O)

16

bash % python3 -O prog.py

159



Copyright (C) 2016,  http://www.dabeaz.com 5-

Exercise 5.1

17

Time : 10 Minutes

Copyright (C) 2016,  http://www.dabeaz.com 5-

Function Error Checking
• As you know, exceptions indicate errors

raise RuntimeError("You're dead")

• Exceptions can be caught

18

• The mechanics of exception handling is 
usually straightforward, but proper usage is 
often a lot trickier than it looks

try:
    statements
    ...
except RuntimeError as e:
    # Handle the runtime error
    ...

160



Copyright (C) 2016,  http://www.dabeaz.com 5-

What Exceptions to Handle?
• Functions should only handle exceptions 

where recovery is possible (and makes sense):
def read_csv(filename):
    f = open(filename)
    for row in csv.reader(f):
        try:
            name = row[0]
            shares = int(row[1])
            price = float(row[2])
        except ValueError as e:
            print('Bad row:', row)
            continue
        ...

19

• Let all other exceptions propagate--they 
usually indicate a more serious problem

Copyright (C) 2016,  http://www.dabeaz.com 5-

Example
• Don't worry about things like this

>>> read_csv('bogus.csv')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "reader.py", line 10, in read_csv
    f = open(filename)
FileNotFoundError: [Errno 2] No such file or directory: 
'bogus.csv'
>>> 

20

• There is no sensible recovery.  The failure is 
someone else's problem.

161



Copyright (C) 2016,  http://www.dabeaz.com 5-

Catching All Errors

• Never catch all exceptions unless you report/
record the actual exception that occurred
try:
    # Some complicated operation
    ...
except Exception as e:
    print("Sorry, it didn't work.")
    print("Reason:", e)
    ...

21

• Not reporting actual exception information is 
the fastest way to create undebuggable code

Copyright (C) 2016,  http://www.dabeaz.com 5-

Ignoring Errors
• No! No! No!

try:
    # Some complicated operation
    ...
except Exception:
    pass

22

• Argh!!!! Boom!
try:
    # Some complicated operation
    ...
except Exception:
    # !! TODO
    pass

• Catastrophic failures are often a result of 
exception handling gone terribly wrong. 

Ariane 5

162



Copyright (C) 2016,  http://www.dabeaz.com 5-

Reraising Exceptions

• Log/re-raise 
try:
    # Some complicated operation
    ...
except Exception as e:
    print("Sorry, it didn't work.")
    print("Reason:", e)
    raise

23

• Useful if you want to do something with the 
exception, but allow it to propagate

Copyright (C) 2016,  http://www.dabeaz.com 5-

Managing Resources
• Take care to manage system resources correctly

24

def read_csv(filename):
    f = open(filename)
    try:
        ... do whatever ...
    finally:
        f.close()

• A more modern version (context manager)
def read_csv(filename):
    f = open(filename)
    with f:
        ... do whatever ...

• Failure to do this might cause leaky file 
descriptors, deadlock, or other problems

163



Copyright (C) 2016,  http://www.dabeaz.com 5-

What Exceptions to Raise?
• Applications should have their own exceptions

class ApplicationError(Exception):
    pass

class SomeOtherError(ApplicationError):
    pass

25

• Issue:  How do you distinguish between 
programming mistakes and exceptions that you 
meant to raise?

• Reserve Python's built-in exceptions for 
programming mistakes.  Catch, don't raise. 

Copyright (C) 2016,  http://www.dabeaz.com 5-

Return Codes
• Don't use return codes (usually)

def read_csv():
    # Some complicated thing
    ...
    if error:
        return -1   # Oops
    else:
        return result

26

• Return codes are not the "standard" way of 
signaling errors in Python

• Callers will often forget and program will crash 
for a different reason later.

164



Copyright (C) 2016,  http://www.dabeaz.com 5-

Logging
• Use logging for recording diagnostics

27

import logging
log = logging.getLogger(__name__)

def read_csv(filename):
    ...
    try:
        name = row[0]
        shares = int(row[1])
        price = float(row[2])
    except ValueError as e:
        log.warning("Bad row: %s", row)
        log.debug("Reason : %s", e)

• Usually a better option than print() functions

Copyright (C) 2016,  http://www.dabeaz.com 5-

Exercise 5.2

28

Time : 15 Minutes

165



Copyright (C) 2016,  http://www.dabeaz.com 5-

Object Design

• class statement can define new objects

• There are various OO programming techniques

• Techniques for code reuse (i.e., inheritance)

• But Python is not Java, or C#, or C++, etc..

29

Copyright (C) 2016,  http://www.dabeaz.com 5-

Don't Use Classes
• Consider this class

class TablePrinter(object):
    def __init__(self, formatter):
        self.formatter = formatter
    def output(self, records, fields):
        self.formatter.headings(fields)
        for r in records:
            rowdata = [getattr(r, name) for name in fields ]
            self.formatter.row(rowdata)

30

• Maybe a simple function is good enough
def print_table(records, fields, formatter):
    formatter.headings(fields)
    for r in records:
        rowdata = [getattr(r, name) for name in fields ]
        formatter.row(rowdata)

• It's okay to make functions.  No, really!

166



Copyright (C) 2016,  http://www.dabeaz.com 5-

Definition Style

• Classes are usually capitalized
class Stock(object):
    ...

class TablePrinter(object):
    ...

31

• May include a doc string
class Stock(object):
    '''
    Represents a holding of stock
    '''
    def __init__(self, name, shares, price):
        self.name = name
        self.shares = shares
        self.price = price

Copyright (C) 2016,  http://www.dabeaz.com 5-

Show the State
• If there's state, make an informative repr()

class Stock(object):
    def __init__(self, name, shares, price):
        self.name = name
        self.shares = shares
        self.price = price

    def __repr__(self):
        return 'Stock(%r, %r, %r)' % (self.name,
                                      self.shares,
                                      self.price)

32

• Simplifies everything (debugging, logging, etc)
>>> s = Stock('GOOG', 100, 490.1)
>>> s
Stock('GOOG', 100, 490.1)
>>>

167



Copyright (C) 2016,  http://www.dabeaz.com 5-

No Getters/Setters
• Embrace simplicity

class Stock(object):
    def __init__(self, name, shares, price):
        self._name = name
        self._shares = shares
        self._price = price

    def getShares(self):            # NO!
        return self._shares

    def setShares(self, shares):    # NO!
        self._shares = shares

33

• Nobody wants to use extraneous methods

• Use properties/descriptors if you need more

Copyright (C) 2016,  http://www.dabeaz.com 5-

Know the Phrasebook
• There are common ways of using objects

for item in obj:       # Iteration
    ...

with obj:              # Context-manager
    ...

value = obj[key]       # Containers/mappings
obj[key] = value
del obj[key]

obj1 + obj2            # Numbers
obj1 - obj2

34

• Your objects should speak the same language

• You'll be happier.  So will everyone else.

168



Copyright (C) 2016,  http://www.dabeaz.com 5-

Zen of Python
>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
>>> 

35

Copyright (C) 2016,  http://www.dabeaz.com 5-

Exercise 5.3

36

Time : 10 Minutes

169



Copyright (C) 2016,  http://www.dabeaz.com 5-

Testing Rocks, 
Debugging Sucks

• What else is there to say?

• Dynamic nature of Python makes testing 
critically important to most applications

• There is no compiler to find your bugs

• Only way to find bugs is to run the code and 
make sure you exercise all of its features

37

Copyright (C) 2016,  http://www.dabeaz.com 5-

unittest Module

• Built-in module used for testing

• Used by the standard library

• Commonly used in other applications

• Will briefly illustrate

38

170



Copyright (C) 2016,  http://www.dabeaz.com 5-

Example Code

• Suppose you have this function

# simple.py
def add(x, y):
    '''
    Adds x and y.
    '''
    return x + y

>>> add(2,2)
4
>>> add('hello','world')
'helloworld'
>>>

39

• Let's test it

Copyright (C) 2016,  http://www.dabeaz.com 5-

Using unittest

• First, you create a separate file
# testsimple.py
import simple
import unittest

class TestAdd(unittest.TestCase):
     ...

• Then you define testing classes

• They must inherit from unittest.TestCase

40

171



Copyright (C) 2016,  http://www.dabeaz.com 5-

Using unittest
• Define testing methods

class TestAdd(unittest.TestCase):
    def test_simple(self):
        # Test with simple integer arguments
        r = simple.add(2, 2)
        self.assertEqual(r, 5)

    def test_str(self):
        # Test with strings
        r = simple.add('hello', 'world')
        self.assertEqual(r, 'helloworld')

• Each method must start with "test..."

41

Copyright (C) 2016,  http://www.dabeaz.com 5-

Using unittest
• Each test uses special assertions

# Assert that expr is True
self.assertTrue(expr)       

# Assert that x == y
self.assertEqual(x,y)

# Assert that x is near y
self.assertAlmostEqual(x,y,places)

# Assert that an exception is raised
with self.assertRaises(SomeError):
    statement1
    statement2
    ...

• There are others

42

172



Copyright (C) 2016,  http://www.dabeaz.com 5-

Running unittests
• To run tests, add the following code

# testsimple.py
...
if __name__ == '__main__':
    unittest.main()

• Then run Python on the test file
bash % python3 testsimple.py
F.
========================================================
FAIL: test_simple (__main__.TestAdd)
--------------------------------------------------------
Traceback (most recent call last):
  File "testsimple.py", line 8, in test_simple
    self.assertEqual(r, 5)
AssertionError: 4 != 5
--------------------------------------------------------
Ran 2 tests in 0.000s
FAILED (failures=1)

43

Copyright (C) 2016,  http://www.dabeaz.com 5-

unittest comments

• There is an art to effective unit testing

• Can grow to be quite complicated for large 
applications

• The unittest module has a huge number of 
options related to test runners, collection of 
results, and other aspects of testing (consult 
documentation for details)

44

173



Copyright (C) 2016,  http://www.dabeaz.com 5-

Exercise 5.4

45

Time : 15 Minutes

Copyright (C) 2016,  http://www.dabeaz.com 5-

Optimization

• Python is interpreted

• Often significantly slower than C

• You may want to optimize your code

• How?

46

174



Copyright (C) 2016,  http://www.dabeaz.com 5-

Optimization : Algorithms

• Tip : Understand algorithms

• Don't use an O(N**2) algorithm if there's 
an O(N) alternative

• A straightforward implementation of a 
good algorithm is going to beat your tricky 
optimized version of a bad algorithm

47

Copyright (C) 2016,  http://www.dabeaz.com 5-

Optimization : Max Speedup

• Tip : Know how your code spends time

• Example:  25% of time is spent in foo()

• You make foo() run ten times as fast

• What is the execution time of the new code?

48

new time = 0.75 + 0.25/10 = 0.775 x old time

unoptimized part optimized part

• Corollary: Don't optimize unimportant bits

175



Copyright (C) 2016,  http://www.dabeaz.com 5-

Profiling

• cProfile module

• Collects statistics and prints a report

• Run run it from the command shell
bash % python3 -m cProfile someprogram.py

49

Copyright (C) 2016,  http://www.dabeaz.com 5-

Profile Sample Output
shell % python3 -m cProfile cparse.py
         447981 function calls (446195 primitive calls) in 
5.640 CPU seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall 
filename:lineno(function)
        2    0.000    0.000    0.000    0.000 :0(StringIO)
   101599    0.470    0.000    0.470    0.000 :0(append)
       56    0.000    0.000    0.000    0.000 :0(callable)
        4    0.000    0.000    0.000    0.000 :0(close)
     1028    0.010    0.000    0.010    0.000 :0(cmp)
        4    0.000    0.000    0.000    0.000 :0(compile)
        1    0.000    0.000    0.000    0.000 :0(digest)
        2    0.000    0.000    0.000    0.000 :0(exc_info)
        1    0.000    0.000    5.640    5.640 :0(execfile)
        4    0.000    0.000    0.000    0.000 :0(extend)
       50    0.000    0.000    0.000    0.000 :0(find)
    83102    0.430    0.000    0.430    0.000 :0(get)
...

50

176



Copyright (C) 2016,  http://www.dabeaz.com 5-

Optimization : Built-in Types

• Tip : Use the built-in datatypes and methods

• Tuples, lists, dicts, sets, etc. are all 
implemented in C code (and fast)

• Don't implement your own containers (e.g., 
linked lists, etc.)

51

Copyright (C) 2016,  http://www.dabeaz.com 5-

Optimization : Layering

• Tip :  Avoid Excessive Layering

• Every layer of abstraction has a real cost

• Examples : Descriptors, properties, wrappers, etc.

• Keep it simple

52

177



Copyright (C) 2016,  http://www.dabeaz.com 5-

Optimization : Attributes

• Tip : Avoid the (.) attribute lookup operator

53

import math
def foo1(nums):
    for x in nums:
        y = math.sin(x)

from math import sin
def foo2(nums):
    for x in nums:
        y = sin(x)

1.00s

0.81s

• Every (.) lookup has some cost

Copyright (C) 2016,  http://www.dabeaz.com 5-

Optimization : Locality

• Tip : Frequently accessed items should be 
made as "local" as possible

54

from math import sin
def foo2(nums):
    for x in nums:
        y = sin(x)

def foo3(nums):
    from math import sin
    for x in nums:
        y = sin(x)

0.81s

0.72s

• Only difference : local/global variable for sin()

178



Copyright (C) 2016,  http://www.dabeaz.com 5-

Optimization : Binding

• Tip : Use bound methods

55

def foo1(nums):
    result = []
    for x in nums:
        result.append(sin(x))
    
def foo2(nums):
    result = []
    result_append = result.append
    for x in nums:
        result_append(sin(x))

• You save time on attribute lookup

1.00s

0.75s

Copyright (C) 2016,  http://www.dabeaz.com 5-

Optimization : Exceptions
• Tip : Use exceptions for uncommon failures

56

def parse_data(lines):
    for line in lines:
        fields = line.split()
        if len(fields) != 3:
            continue
        name, shares, price = fields
        ...

def parse_data(lines):
    for line in lines:
        fields = line.split()
        try:
            name, shares, price = fields
        except ValueError:
            continue

vs

notice this 
extra check

catch an 
exception 

instead

1.00s

0.88s

179



Copyright (C) 2016,  http://www.dabeaz.com 5-

Optimization : Exceptions
• Followup: How uncommon?

57

def parse_data(lines):
    for line in lines:
        fields = line.split()
        if len(fields) != 3:
            continue
        name, shares, price = fields
        ...

def parse_data(lines):
    for line in lines:
        fields = line.split()
        try:
            name, shares, price = fields
        except ValueError:
            continue

vs

notice this 
extra check

catch an 
exception 

instead

1.00s

1.27s

10% of lines with 
bad data

Copyright (C) 2016,  http://www.dabeaz.com 5-

Optimization : Exceptions
• Tip : Avoid exceptions for common failures

58

try:
    value = items[key]
except KeyError:
    value = None

vs
if key in items:
    value = items[key]
else:
    value = None

or
value = items.get(key,None)

180



Copyright (C) 2016,  http://www.dabeaz.com 5-

Exercise 5.5

59

Time : 10 Minutes

181



Copyright (C) 2016,  http://www.dabeaz.com 6-

Working with Code
Section 6

1

Copyright (C) 2016,  http://www.dabeaz.com 6-

Overview

• Advanced function usage/definition

• Introspection

• Code generation (eval, exec)

• Closures

• Callables

2

182



Copyright (C) 2016,  http://www.dabeaz.com 6-

What is a function?

• A function is a sequence of statements
def funcname(args):
    statement
    statement
    ...
    return result

3

• Carries out an operation and returns a result

Copyright (C) 2016,  http://www.dabeaz.com 6-

Function Arguments
• Functions operate on passed arguments

def func(x,y,z):
    statements

4

• There are two calling styles
a = func(1,2,3)         # Positional arguments
a = func(x=1,y=2,z=3)   # Keyword arguments

arguments

• You can mix the two styles
a = func(1,z=3,y=2)

• Positional args always go first.  Each argument 
gets one and only one value

183



Copyright (C) 2016,  http://www.dabeaz.com 6-

Variable Arguments

• Function that accepts any number of args

def func(x, *args):
    ...    

• Here, the arguments get passed as a tuple
func(1,2,3,4,5)

def func(x, *args):

(2,3,4,5)

5

1

Copyright (C) 2016,  http://www.dabeaz.com 6-

Variable Arguments
• Function that accepts any keyword args

def func(x, y, **kwargs):
    ...

• Extra keywords get passed in a dict
func(2, 3, flag=True,mode="fast",header="debug")

def func(x, y, **kwargs):
    ...

{ 'flag' : True,
  'mode' : 'fast',
  'header' : 'debug' }

6

184



Copyright (C) 2016,  http://www.dabeaz.com 6-

Variable Arguments

• A function that takes any arguments
def func(*args, **kwargs):
    statements

• This will accept any combination of 
positional or keyword arguments

• Sometimes used when writing wrappers or 
when you want to pass arguments through 
to another function

7

Copyright (C) 2016,  http://www.dabeaz.com 6-

Keyword-only Arguments
• Named arguments after (*)

def send(msg, *, timeout=None):
    statements

send(msg, 10)           # Error
send(msg, timeout=10)   # OK

8

• Can be mixed with *args, **kwargs
def sum(*values, initial=0):
    for val in values:
        initial += val
    return initial

sum(1,2,3, initial=100)      # --> 106

• Note: Python 3 only

185



Copyright (C) 2016,  http://www.dabeaz.com 6-

Passing Tuples and Dicts
• Tuples can expand into function args

args = (2,3,4)
func(1, *args)    # Same as func(1,2,3,4)

• Dictionaries can expand to keyword args

9

kwargs = {
   'color' : 'red',
   'delimiter' : ',',
   'width' : 400 }

func(data, **kwargs)
# Same as func(data,color='red',delimiter=',',width=400)

Copyright (C) 2016,  http://www.dabeaz.com 6-

Exercise 6.1

10

Time : 20 minutes

186



Copyright (C) 2016,  http://www.dabeaz.com 6-

Scoping Rules
• Programs assign values to variables

• Python stores variables in two scopes

• Globals (assigned outside functions)

• Locals (assignments inside functions)

• Scoping rules motivated by C programming

11

x = value           # Global variable

def func():
    y = value       # Local variable

Copyright (C) 2016,  http://www.dabeaz.com 6-

Statement Execution

• All statements execute within two scopes 
(even statements not part of a function)

• Global scope is always the module in which 
a function is defined

• Local scope is either private to a function 
or the same as the global scope (for 
statements executed at module level)

12

187



Copyright (C) 2016,  http://www.dabeaz.com 6-

Local Variables
• All variables assigned in a function are private

• Values not retained or accessible after return
>>> stocks = read_portfolio('stocks.dat')
>>> fields
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
NameError: name 'fields' is not defined
>>>

13

def read_portfolio(filename):
    portfolio = []
    for line in open(filename):
         fields = line.split()
         s = (fields[0],int(fields[1]),float(fields[2]))
         portfolio.append(s)
    return portfolio

• Don't conflict with variables found elsewhere

Copyright (C) 2016,  http://www.dabeaz.com 6-

Global Variables
• Functions can read the values of globals

• However, assignments have no effect

14

x = 42

def func():
    print(x)

def func():
   x = 37

>>> x
42
>>> func()
>>> x
42
>>>

188



Copyright (C) 2016,  http://www.dabeaz.com 6-

Modifying Globals

• If you want to modify a global variable you 
must declare it as such in the function
x = 42

def func():
    global x
    x = 37

• global declaration must appear before use

• Only necessary for globals that will be 
modified (globals are already readable)

15

Copyright (C) 2016,  http://www.dabeaz.com 6-

globals() and locals()

• globals() - Give you a dictionary 
representing the contents of global scope

• locals() - Gives you a dictionary 
representing the contents of local scope

• Can use these to inspect the environment 
in which a statement will execute 

16

189



Copyright (C) 2016,  http://www.dabeaz.com 6-

Nested Scopes
• Python allows nested function definitions

def countdown(start):
    n = start
    def display():
        print('T-minus %d' % n)
    while n > 0:
        display()
        n -= 1

• In such definitions, inner functions can freely 
read the value of local variables defined in 
outer functions

• An exception to the two-scope rule

17

Copyright (C) 2016,  http://www.dabeaz.com 6-

Nested Scopes
• Inner functions can modify outer variables

def countdown(start):
    n = start
    def display():
        print('T-minus %d' % n)
    def decrement():
        nonlocal n
        n -= 1
    while n > 0:
        display()
        decrement()

18

• Must be declared as "nonlocal"

• Only in Python 3. Usage is rare. 

190



Copyright (C) 2016,  http://www.dabeaz.com 6-

Exercise 6.2

19

Time : 15 minutes

Copyright (C) 2016,  http://www.dabeaz.com 6-

Function Objects

• When you define a function, the function 
itself becomes a kind of object that you can 
manipulate

• Can assign to variables, place in containers, 
pass around as data, etc.

• Functions can also be inspected

20

191



Copyright (C) 2016,  http://www.dabeaz.com 6-

Documentation Strings

• First line of function may be string
def func(a, b):
    'This function does something.'
    ...

• The doc string is stored in __doc__

21

>>> func.__doc__
'This function does something.'
>>>

• Help tools look at __doc__,  but other 
programs might examine it for various 
purposes (testing, etc.)

Copyright (C) 2016,  http://www.dabeaz.com 6-

Annotations

• Arguments and return might be annotated

def func(a:int, b:int) -> int:
    ...

• Stored in __annotations__

22

>>> func.__annotations__
{'a': <class 'int'>, 'b': <class 'int'>, 
 'return': <class 'int'>}
>>>

• Annotations do nothing--purely informational 
for other code that might want to look at 
them.

192



Copyright (C) 2016,  http://www.dabeaz.com 6-

Function Attributes
• Little known fact : You can attach arbitrary 

attributes to a function 
def func(a, b):
    'This function does something.'
    ...

func.threadsafe = False
func.blah = 42

23

• Under the covers, each function has a 
dictionary (__dict__) that holds these values

• Useful for code that manipulates functions

Copyright (C) 2016,  http://www.dabeaz.com 6-

Function Inspection
• Almost every aspect of a function can be 

inspected if you know where to look
def func(a, b, c=42):
    'This function does something.'
    ...
>>> func.__name__
'func'
>>> func.__defaults__
(42,)
>>> func.__code__
<code object func at 0x325f50, file "<stdin>", line 1>
>>> func.__code__.co_argcount
3
>>> func.__code__.co_varnames
('a', 'b', 'c')

24

• Use the dir() function to see more

193



Copyright (C) 2016,  http://www.dabeaz.com 6-

inspect Module
• Use the inspect module to get details about 

functions in a more useful form
def func(a, b, c=42):
    ...

>>> import inspect
>>> sig = inspect.signature(func)
>>> print(sig)
(a, b, c=42)
>>> list(sig.parameters)
['a', 'b', 'c']
>>> sig.parameters['c'].default
42
>>>

25

• Many more module features (not shown)

Copyright (C) 2016,  http://www.dabeaz.com 6-

Exercise 6.3

26

Time : 15 minutes

194



Copyright (C) 2016,  http://www.dabeaz.com 6-

eval() and exec()
• eval(code) - Evaluates an expression

>>> x = 10
>>> eval('3*x - 2')
28
>>>

27

• exec(code) - Executes arbitrary statements
>>> exec('for i in range(5): print(i)')
0
1
2
3
4
>>>

• Code executes in current globals()/locals()

Copyright (C) 2016,  http://www.dabeaz.com 6-

eval() and exec()
• Caution: Modifications to local scope are lost

def func():
    x = 10
    exec('x = 15; print(x)')   # ---> 15
    print(x)                   # ---> 10    ?????

28

def func():
    x = 10
    loc = locals()
    exec('x = 15; print(x)', globals(), loc)  # ---> 15
    x = loc['x']
    print(x)                                  # ---> 15

• eval(expr [, globals [, locals])

• exec(code [, globals [, locals])

195



Copyright (C) 2016,  http://www.dabeaz.com 6-

eval/exec Caution

• Use these features with extreme care

• Overuse can lead to various problems

• Code doesn't run as fast as normal functions

• Bizarre interaction with scoping/variables

29

Copyright (C) 2016,  http://www.dabeaz.com 6-

Exercise 6.4

30

Time : 15 minutes

196



Copyright (C) 2016,  http://www.dabeaz.com 6-

Functional Programming

• A programming style relying primarily on 
functions and evaluation of expressions

• A few general properties

• Function evaluation only

• No side effects, no mutable state

• Higher order functions

• Prior example: List comprehensions

31

Copyright (C) 2016,  http://www.dabeaz.com 6-

Higher Order Functions

• Essential features...

• Functions can accept functions as input 

• Functions can return functions as results

• Python supports both

32

197



Copyright (C) 2016,  http://www.dabeaz.com 6-

Functions as Input

• Functions can be passed as inputs

• Example:

33

def map(func, items):
    return [func(x) for x in items]

def square(x):
    return x * x

nums = [1, 2, 3, 4]
result = map(square, nums)  # [1, 4, 9, 16] 

• A function is just like any other bit of data

Copyright (C) 2016,  http://www.dabeaz.com 6-

Returning Functions
• Consider the following function

34

def add(x,y):
    def do_add():
        return x + y
    return do_add

• A function that returns another function?
>>> a = add(3,4)
>>> a
<function do_add at 0x6a670>
>>> a()
7
>>>

• Notice that it works, but ponder it...

198



Copyright (C) 2016,  http://www.dabeaz.com 6-

Nested Scopes (Reprise)
• Observe how the inner function refers to 

variables defined by the outer function

35

def add(x,y):
    def do_add():
        return x + y
    return do_add

>>> a = add(3,4)
>>> a
<function do_add at 0x6a670>
>>> a()
7

• Further observe that those variables are 
somehow kept alive after add() has finished

Where are the x,y  
values coming from?

Copyright (C) 2016,  http://www.dabeaz.com 6-

Closures

• If an inner function is returned as a result, 
the inner function is known as a "closure"

36

def add(x,y):
    def do_add():
        return x + y
    return do_add

• Essential feature : A "closure" retains the 
values of all variables needed for the function 
to run properly later on

199



Copyright (C) 2016,  http://www.dabeaz.com 6-

Closures
• To make it work, references to the outer 

variables (free variables) get carried along 
with the function
>>> a
<function do_add at 0x4dd30>
>>> a.__closure__
(<cell at 0x54f30: int object at 0x54fe0>,
 <cell at 0x54fd0: int object at 0x54f60>)
>>> a.__closure__[0].cell_contents
4
>>> a.__closure__[1].cell_contents
3

37

• So, think of a closure as a function, but with 
an extra environment of variable definitions 
that's sitting behind the scenes

Copyright (C) 2016,  http://www.dabeaz.com 6-

Using Closures

• Closures are an essential feature of Python

• Common applications:

• Delayed/Deferred evaluation

• Partial function application

• Code creation ("macros")

38

200



Copyright (C) 2016,  http://www.dabeaz.com 6-

Delayed Evaluation
• Go back to our original example

39

def add(x,y):
    def do_add():
        return x + y
    return do_add

• This is an example of "delayed evaluation"

• add() doesn't do anything, it returns a 
function that carries out work later
>>> a = add(3,4)
>>> a
<function do_add at 0x6a670>
>>> a()
7

Copyright (C) 2016,  http://www.dabeaz.com 6-

Delayed Evaluation

• Delayed evaluation defers calculations until a 
later point in program execution

• Perhaps the calculation is meant to execute 
in response to a future event

• Perhaps the calculation can't be performed 
right this moment because all of the needed 
inputs aren't available yet

40

201



Copyright (C) 2016,  http://www.dabeaz.com 6-

Exercise 6.5

Time : 25 Minutes

41

Copyright (C) 2016,  http://www.dabeaz.com 6-

Callable Objects
• You can define your own objects that 

emulate Python functions (e.g., "callables")

42

class Callable(object):
    def __call__(self,*args,**kwargs):
      print('Calling', args, kwargs)

• Must implement __call__ special method
>>> c = Callable()
>>> c(2,3,color='red')
Calling (2, 3) {'color': 'red'}
>>>

• Free to do anything you want in __call__

202



Copyright (C) 2016,  http://www.dabeaz.com 6-

Defining Callables
• Callable objects sometimes defined when 

you need to have more than just a function 
(e.g., storing extra data, caching, etc.)

43

class Memoize(object):
    def __init__(self,func):
        self._cache = {}
        self._func = func
    def __call__(self,*args):
        if args in self._cache:
           return self._cache[args]
        r = self._func(*args)
        self._cache[args] = r
        return r
  def clear(self):
      self._cache.clear()

Copyright (C) 2016,  http://www.dabeaz.com 6-

Exercise 6.6

Time : 10 Minutes

44

203



Copyright (C) 2016,  http://www.dabeaz.com 7-

Metaprogramming

1

Section 7

Copyright (C) 2016,  http://www.dabeaz.com 7-

Introduction

• Writing programs where there is a lot of 
code replication is usually problematic

• Tedious to write

• Hard to maintain

• Painful if you decide that you need to make a 
change (or fix a bug) in all of that extremely 
repetitive code

2

204



Copyright (C) 2016,  http://www.dabeaz.com 7-

Metaprogramming

• Metaprogramming pertains to the problem 
of writing code that manipulates other code

• Common examples:

• Macros

• Wrappers

• Aspects

• Essentially, it's doing things to code

3

Copyright (C) 2016,  http://www.dabeaz.com 7-

Python Metaprogramming

• Major features

• Decorators

• Class decorators

• Metaclasses

• We're going to talk about all of them

• They are not as difficult to grasp as you think

4

205



Copyright (C) 2016,  http://www.dabeaz.com 7-

Decorators

• A decorator is a function that creates a 
wrapper around another function

• The wrapper is a new function that works 
exactly like the original function (same 
arguments, same return value) except that 
some kind of extra processing is carried out

• Let's see a simple example first

5

Copyright (C) 2016,  http://www.dabeaz.com 7-

Wrapper Functions
• Here is a simple function:

def add(x, y):
    return x + y

6

• Here is an example of a wrapper function
def logged_add(x, y):
    print('Calling add')
    return add(x, y)

• Example use:
>>> add(3, 4)
7
>>> logged_add(3, 4)
Calling add
7
>>>

This extra output is created by the 
wrapper, but the original function 

is still called to get the result

206



Copyright (C) 2016,  http://www.dabeaz.com 7-

Creating Wrappers
• Insight : You can write a function that makes a 

wrapper around any function
def logged(func):
    # Define a wrapper function around func
    def wrapper(*args, **kwargs):
        print('Calling', func.__name__)
        return func(*args, **kwargs)
    return wrapper

7

• Usage:
>>> logged_add = logged(add)
>>> logged_add
<function wrapper at 0x378670>
>>> logged_add(3, 4)
Calling add
7
>>> 

Copyright (C) 2016,  http://www.dabeaz.com 7-

Wrappers as Replacements
• When you create a wrapper, you often want 

to replace the original function with it
def add(x, y):
    return x + y

# Replace add with a wrapped version
add = logged(add)

8

• Other code continues to use the original 
function name, but is unaware that a wrapper 
has been injected (that's the whole point)
>>> add(3, 4)
Calling add
7
>>>

207



Copyright (C) 2016,  http://www.dabeaz.com 7-

Decorator Concept

• When you replace a function with a wrapper, 
you are usually giving the function extra 
functionality

• This process is known as "decoration"

• You are "decorating" a function with some 
extra features

9

Copyright (C) 2016,  http://www.dabeaz.com 7-

Decorator Syntax
• The definition of a function and wrapping 

almost always occur together

10

• However,  it looks weird and is error prone

• The @decorator syntax simplifies it

def add(x, y):
    return x + y
add = logged(add)

@logged
def add(x, y):
    return x + y

208



Copyright (C) 2016,  http://www.dabeaz.com 7-

Decorator Syntax
• Whenever you see a decorator,  a function is 

getting wrapped.   That's it

• Example : In classes

11

class Foo(object):
    @staticmethod
    def bar():
        ...
    @classmethod
    def spam(cls):
        ...
    @property
    def name(self):
        ...

class Foo(object):
    def bar():
        ...
    bar = staticmethod(bar)
    def spam(cls):
        ...
    spam = classmethod(spam)
    def name(self):
        ...
    name = property(name)

Copyright (C) 2016,  http://www.dabeaz.com 7-

Using Decorators

• Use a decorator anytime you want to define a 
kind of "macro" involving function definitions

• There are many possible applications

• Debugging and diagnostics

• Avoiding code replication

• Enabling/disabling optional features

12

209



Copyright (C) 2016,  http://www.dabeaz.com 7-

Timing Measurements
• A decorator that reports execution time

import time
def timethis(func):
    def wrapper(*args, **kwargs):
        start = time.time()
        r = func(*args, **kwargs)
        end = time.time()
        print(func.__name__, end - start)
        return r
    return wrapper

13

• Usage:
@timethis
def bigcalculation():
    statements
    statements

Copyright (C) 2016,  http://www.dabeaz.com 7-

Exercise 7.1

14

Time : 15 Minutes

210



Copyright (C) 2016,  http://www.dabeaz.com 7-

Advanced Decorators

• There are a few tricky additional details

• Multiple decorators

• Decorators and metadata

• Decorators with arguments

15

Copyright (C) 2016,  http://www.dabeaz.com 7-

Multiple Decorators
• You can apply as many decorators as you want

16

@foo
@bar
@spam
def add(x, y):
    return x + y

• This is the same as this:

add = foo(bar(spam(add)))

• To keep your sanity, it's probably not a good 
idea to go overboard with it

211



Copyright (C) 2016,  http://www.dabeaz.com 7-

Function Metadata
• When you define a function, there is some extra 

information stored (name, doc strings, etc.)

17

def add(x, y):
    'Adds x and y'
    return x + y

>>> add.__name__
'add'
>>> add.__doc__
'Adds x and y'
>>> help(add)
Help on function add in module __main__:

add(x, y)
    Adds x and y
>>>

Copyright (C) 2016,  http://www.dabeaz.com 7-

The Metadata Problem
• Decorators don't preserve metadata

18

@logged
def add(x, y):
    'Adds x and y'    return x + y

>>> add.__name__
'wrapper'
>>> add.__doc__
>>> help(add)
Help on function wrapper in module __main__:

wrapper(*args, **kwargs)
>>>

• This is a problem

212



Copyright (C) 2016,  http://www.dabeaz.com 7-

Copying Metadata
• Decorators should copy metadata

19

• A better solution : use @wraps

def logged(func):
    def wrapper(*args, **kwargs):
        print('Calling', func.__name__)
        return func(*args, **kwargs)
    wrapper.__name__ = func.__name__
    wrapper.__doc__ = func.__doc__
    return wrapper

from functools import wraps

def logged(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        print('Calling', func.__name__)
        return func(*args, **kwargs)
    return wrapper

Copies 
metadata 

from func to 
the wrapper

manual 
copying of 
metadata

Copyright (C) 2016,  http://www.dabeaz.com 7-

Decorators with Args
• Decorators can accept arguments

20

@decorator(x, y, z)
def func():
    ...

• It's mind boggling, but here's what happens
def func():
    ...

func = decorator(x, y, z)(func)

• The decorator function must return a 
function which is called to make a wrapper 

213



Copyright (C) 2016,  http://www.dabeaz.com 7-

Decorators with Args
• Example: Logging with a custom message

21

def logmsg(message):
    def logged(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            print(message.format(name=func.__name__))
            return func(*args, **kwargs)
        return wrapper
    return logged

• Example use:
@logmsg('You called {name}')
def add(x, y):
    return x + y

Copyright (C) 2016,  http://www.dabeaz.com 7-

Decorators with Args
• Example: Logging with a custom message

22

def logmsg(message):
    def logged(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            print(message.format(name=func.__name__))
            return func(*args, **kwargs)
        return wrapper
    return logged

Outer function 
takes the 
arguments

• The outer function is like an enclosing 
environment that gets added to the decorator 
to accept the extra arguments

Arguments can
be used by the 

code inside

214



Copyright (C) 2016,  http://www.dabeaz.com 7-

Decorators with Args
• Example: Logging with a custom message

23

def logmsg(message):
    def logged(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            print(message.format(name=func.__name__))
            return func(*args, **kwargs)
        return wrapper
    return logged

• Inner functions are standard decorator code

The same 
decorator code 

as before

Copyright (C) 2016,  http://www.dabeaz.com 7-

Decorators with Args

• Decorators with args are more general

• You can specialize to a no-argument case

24

logged = logmsg('Calling {name}')

@logged
def add(x, y):
    return x + y

• This is subtle, but useful for simplifying code

215



Copyright (C) 2016,  http://www.dabeaz.com 7-

Exercise 7.2

25

Time : 15 Minutes

Copyright (C) 2016,  http://www.dabeaz.com 7-

Class Decorators
• Decorators can be applied to class definitions

26

@decorator
class Foo(object):
    def bar(self):
        ...
    def spam(self):
        ...

• It's exactly the same as doing this:
class Foo(object):
    def bar(self):
        ...
    def spam(self):
        ...
Foo = decorator(Foo)

• Manipulates or wraps a class

216



Copyright (C) 2016,  http://www.dabeaz.com 7-

Class Decorators

• Most class decorators inspect or do something 
special with the class definition 

• Typical prototype

27

def decorator(cls):
    # Do something with cls
    ...
    # Return the original class back
    return cls

• Observe:  The original class is not replaced

Copyright (C) 2016,  http://www.dabeaz.com 7-

Example
• Recording all attribute lookups

28

def logged_getattr(cls):
    # Get the original implementation
    orig_getattribute = cls.__getattribute__

    # Replacement method
    def __getattribute__(self, name):
        print('Getting:', name)
        return orig_getattribute(self, name)

    # Attach to the class 
    cls.__getattribute__ = __getattribute__
    return cls

• This is replacing a method of the class

217



Copyright (C) 2016,  http://www.dabeaz.com 7-

Example

29

@logged_getattr
class Spam(object):
    def foo(self):
        pass
    def bar(self):
        pass

>>> s = Spam()
>>> s.x = 23
>>> s.x
Getting: x
>>> s.foo()
Getting: foo
>>> s.bar()
Getting: bar
>>>

Notice how all lookups 
now have logging

Copyright (C) 2016,  http://www.dabeaz.com 7-

Exercise 7.3

30

Time : 15 Minutes

218



Copyright (C) 2016,  http://www.dabeaz.com 7-

Disclaimer

• What follows is Python's most advanced bit

• Took years for programmers to even 
understand what anyone was talking about

• Even now, the details are somewhat hairy

• Also known as the "killer joke"

31

Copyright (C) 2016,  http://www.dabeaz.com 7-

Types
• As you hopefully know, all values in Python 

have an associated type

• Example:
>>> x = 42
>>> type(x)
<class 'int'>
>>> s = 'Hello'
>>> type(s)
<class 'str'>
>>> items = [1,2,3]
>>> type(items)
<class 'list'>
>>>

32

219



Copyright (C) 2016,  http://www.dabeaz.com 7-

Type Constructor

• The "type" is usually a callable for creating 
objects of that type

• Example:
>>> items = [1,2,3]
>>> type(item)
<class 'list'>
>>> a = list()        # Create a new list object
>>> a
[]
>>> b = tuple(items)  # Convert to a tuple
>>>

33

• Type conversions like this are common

Copyright (C) 2016,  http://www.dabeaz.com 7-

Types and Classes
• Classes also define new types

class Foo(object):
    pass

>>> f = Foo()
>>> type(f)
<class '__main__.Foo'>
>>>

34

• It is exactly the same as with built-ins

• The class is the type of instances created

• The class is a callable that creates instances

220



Copyright (C) 2016,  http://www.dabeaz.com 7-

Types of Classes
• Classes are instances of types

• Observe by getting the type of a class itself
>>> class Foo(object): 
...     pass
...  
>>> type(Foo)
<class 'type'>
>>> isinstance(Foo,type)
True
>>>

Recall: type() tells you 
the type of an object. 
Here we're using it 

on a class itself.

35

• This requires some thought, but it should 
make some sense (a class is simply a type)

Copyright (C) 2016,  http://www.dabeaz.com 7-

Creating Types
• Head explosion:  types are represented by their 

own class (type)
class type(object):
    ...

>>> type
<class 'type'>
>>> 

36

• This class creates new "type" objects

• In fact, this is the class that processes class 
definitions when you define your own classes

221



Copyright (C) 2016,  http://www.dabeaz.com 7-

Classes Deconstructed
• Consider a class:

37

class Foo(object):
    def __init__(self,name):
        self.name = name
    def bar(self):
        print("I'm Foo.bar")

• What are its components?

• Name ("Foo")

• Base classes (object)

• Functions (__init__,bar)

Copyright (C) 2016,  http://www.dabeaz.com 7-

Creating a Class
• You can create a class manually from pieces

38

# Define some method functions
def __init__(self,name):
    self.name = name
def bar(self):
    print("I'm Foo.bar")

# Make a method table
methods = {'__init__': __init__,
           'bar': bar }

# Make a new type (Foo)
Foo = type('Foo', (object,), methods)

• These steps mimic the class statement

222



Copyright (C) 2016,  http://www.dabeaz.com 7-

Class Definition Process
• What happens during class definition?

• Step1: Body of class is captured

body = '''
   def __init__(self,name):
        self.name = name
   def bar(self):
        print("I'm Foo.bar")
'''

39

class Foo(object):
    def __init__(self,name):
        self.name = name
    def bar(self):
        print("I'm Foo.bar")

Copyright (C) 2016,  http://www.dabeaz.com 7-

Class Definition Process

• Step 2:  A dictionary is created
__dict__ = type.__prepare__('Foo', (object,))

• Normally, you get a plain Python dictionary
>>> type.__prepare__('Foo', (object,))
{}
>>>

40

• Some extra metadata is inserted
__dict__['__qualname__'] = 'Foo'
__dict__['__module__'] = 'modulename'

223



Copyright (C) 2016,  http://www.dabeaz.com 7-

Class Definition Process

• Step 3: Class body is executed in the dict

exec(body, globals(), __dict__)

• The statements in the body run like a script

• Afterwards, __dict__ is populated
>>> __dict__
{
  '__init__': <function __init__ at 0x4da10>,
  'bar': <function bar at 0x4dd70>},
  '__qualname__': 'Foo',
  '__module__': 'modulename'
}
>>>

41

Copyright (C) 2016,  http://www.dabeaz.com 7-

• Step 4: Class is constructed from its name, 
base classes, and the dictionary
>>> Foo = type('Foo', (object,), __dict__)
>>> Foo
<class '__main__.Foo'>
>>> f = Foo('Guido')
>>> f.bar()
I'm Foo.bar
>>>

• type(name, bases, dict) constructs a class object

42

Class Definition Process

224



Copyright (C) 2016,  http://www.dabeaz.com 7-

Exercise 7.4

43

Time : 15 Minutes

Copyright (C) 2016,  http://www.dabeaz.com 7-

Metaclasses Defined

• A class that creates classes is called a metaclass

• type is an example of a metaclass

44

225



Copyright (C) 2016,  http://www.dabeaz.com 7-

The Metaclass Hook

• Python provides a hook that allows you to 
override the class creation steps

• You can use a different metaclass than "type"

• Using this, you can completely customize 
what happens when a class is created.

45

Copyright (C) 2016,  http://www.dabeaz.com 7-

Metaclass Selection

• metaclass keyword argument

• Sets the class used to create the class object
class Foo(metaclass=type):
   def __init__(self, name):
       self.name = name
   def bar(self):
       print("I'm Foo.bar")

46

• By default, it's set to 'type', but you change it 
to something else (more shortly)

226



Copyright (C) 2016,  http://www.dabeaz.com 7-

Metaclass Selection

• Compatibility note:  Python 2 is different

• Use the __metaclass__ attribute instead
class Foo:
   __metaclass__ = type         # Python 2 only
   def __init__(self, name):
       self.name = name
   def bar(self):
       print("I'm Foo.bar")

47

• Comment: Very difficult to provide Py2/3 
compatibility due to syntax difference

Copyright (C) 2016,  http://www.dabeaz.com 7-

Metaclass Inheritance
• If no metaclass is set, Python uses the same 

type as the base class
class Foo(object):
   def __init__(self, name):
       self.name = name     
   def bar(self):
       print("I'm Foo.bar")
>>> object.__class__
<class 'type'>
>>> type(Foo)
<class 'type'>

48

• Note: this is why you rarely see it

227



Copyright (C) 2016,  http://www.dabeaz.com 7-

Creating a New Metaclass
• You inherit from type and redefine methods such 

as __new__, __prepare__, etc. 
class mytype(type):
    @staticmethod
    def __new__(meta, name, bases, methods):
        print('Creating class : ', name)
        print('Base classes   : ', bases)
        print('Attributes     : ', list(methods))
        return super().__new__(meta, name, bases, methods)

49

• Then you define a new root-object
class myobject(metaclass=mytype):
    pass

Copyright (C) 2016,  http://www.dabeaz.com 7-

Using a Metaclass
• To use the new metaclass, define classes so 

that they inherit from your root object
class Foo(myobject):
    def __init__(self, name):
        self.name = name
    def bar(self):
        print("I'm Foo.bar")

50

• You should see your metaclass at work
Creating class :  Foo
Base classes   :  (<class '__main__.myobject'>,)
Attributes     :  ['bar', '__module__', '__init__']

228



Copyright (C) 2016,  http://www.dabeaz.com 7-

Exercise 7.5

51

Time : 10 Minutes

Copyright (C) 2016,  http://www.dabeaz.com 7-

Typical Applications

• Enforcing coding conventions

• Debugging and diagnostics

• Automatic wrapping of methods (e.g., 
applying a decorator to all methods)

• Filling in missing details

52

229



Copyright (C) 2016,  http://www.dabeaz.com 7-

Using a Metaclass
• Metaclasses allow class definitions to be 

monitored and manipulated

• There are 4 main interception points

53

type.__prepare__(name, bases)

type.__new__(type, name, bases, dict)

type.__init__(cls, name, bases, dict)

type.__call__(cls, *args, **kwargs)

class 
definition

instance
creation

Copyright (C) 2016,  http://www.dabeaz.com 7-

Example: Duplicate Check
class dupedict(dict):
    def __setitem__(self, key, value):
        assert key not in self, '%s duplicated' % key
        super().__setitem__(key, value)

class dupemeta(type):
    @classmethod
    def __prepare__(cls, name, bases):
        return dupedict()

54

• Example:
class A(metaclass=dupemeta):
    def bar(self):
        pass
    def bar(self):
        pass Fails! Duplicate

230



Copyright (C) 2016,  http://www.dabeaz.com 7-

Example: Decoration
def decorator(func):
    ...
    # Decorator
    ...

class meta(type):
    @staticmethod
    def __new__(meta, clsname, bases, dict):
        for key, val in dict.items():
            if callable(val):
                dict[key] = decorator(val)
        return super().__new__(meta, clsname, bases, dict)

55

• This class wraps all methods with a decorator

Copyright (C) 2016,  http://www.dabeaz.com 7-

Example: Class Registration
class meta(type):
    _registered = { }
    def __init__(cls, clsname, bases, dict):
        super().__init__(clsname, bases, dict)
        meta._registered[clsname] = cls

56

• This tracks all subclasses

class A(metaclass=meta):
    pass

class B(A):
    pass

class C(B):
    pass

>>> meta._registered
{'A': <class '__main__.A'>, 
'B': <class '__main__.B'>, 
'C': <class '__main__.C'>}
>>>

231



Copyright (C) 2016,  http://www.dabeaz.com 7-

Example: Instance Creation
class meta(type):
    def __call__(cls, *args, **kwargs):
        print('Creating instance of', cls)
        return super().__call__(*args, **kwargs)

57

• Example:
>>> class A(metaclass=meta):
        pass

>>> a = A()
Creating instance of <class '__main__.A'>
>>>

• Potentially useful for special cases 
(singletons, caching, etc.)

Copyright (C) 2016,  http://www.dabeaz.com 7-

Commentary

• Metaclasses are not something you should be 
defining without really good reasons

• Target audience:

• Framework builders

• Library developers

• End users should not be messing around with 
metaclasses in their own code

58

232



Copyright (C) 2016,  http://www.dabeaz.com 7-

Exercise 7.6

59

Time : 20 Minutes

233



Copyright (C) 2016,  http://www.dabeaz.com 8-

Iterators, Generators, and 
Coroutines

Section 8

1

Copyright (C) 2016,  http://www.dabeaz.com 8-

Iteration

• Iteration defined: Looping over items
a = [2,4,10,37,62]
# Iterate over a
for x in a:
    ...

• A very common pattern

• loops,  list comprehensions, etc.

• Most programs do a huge amount of iteration

2

234



Copyright (C) 2016,  http://www.dabeaz.com 8-

Iteration: Protocol
• Iteration

for x in obj:
    # statements

• Underneath the covers
_iter = obj.__iter__()        # Get iterator object
while True:
    try:
         x = _iter.__next__()  # Get next item
    except StopIteration:      # No more items
         break
    # statements
    ...

• Objects that work with the for-loop all 
implement this low-level iteration protocol

3

Copyright (C) 2016,  http://www.dabeaz.com 8-

Iteration: Protocol
• Example: Manual iteration over a list

>>> x = [1,2,3]
>>> it = x.__iter__()
>>> it
<listiterator object at 0x590b0>
>>> it.__next__()
1
>>> it.__next__()
2
>>> it.__next__()
3
>>> it.__next__()
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
StopIteration
>>> 

4

235



Copyright (C) 2016,  http://www.dabeaz.com 8-

Generators
• Generators simplify customized iteration

def countdown(n):
    print('Counting down from', n)
    while n > 0:
        yield n
        n -= 1

>>> for i in countdown(5):
...     print('T-minus', i)
...
Counting down from 5
T-minus 5
T-minus 4
T-minus 3
T-minus 2
T-minus 1
>>>

5

Copyright (C) 2016,  http://www.dabeaz.com 8-

Generator Functions
• Behavior is different than normal func

• Calling a generator function creates an 
generator object.  It does not start running 
the function.
def countdown(n):
    print('Counting down from', n)
    while n > 0:
        yield n
        n -= 1

>>> x = countdown(10)
>>> x
<generator object at 0x58490>
>>>

Notice that no 
output was 
produced

6

236



Copyright (C) 2016,  http://www.dabeaz.com 8-

Generator Functions
• Function only executes on next()

>>> x = countdown(10)
>>> x
<generator object at 0x58490>
>>> next(x)    # invokes x.__next__()
Counting down from 10
10
>>>

• yield produces a value, but suspends function

• Function resumes on next call to next()
>>> next(x)
9
>>> next(x)
8
>>>

Function starts 
executing here

7

Copyright (C) 2016,  http://www.dabeaz.com 8-

Generator Functions

• When the generator returns, iteration stops
>>> next(x)
1
>>> next(x)
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
StopIteration
>>>

8

• Observation : A generator function implements 
the same low-level protocol that the for 
statement uses on lists, tuples, dicts, files, etc.

237



Copyright (C) 2016,  http://www.dabeaz.com 8-

Iterable Objects
• Objects that implement iteration should 

almost always use generators
class Countdown(object):
    def __init__(self, n):
        self.n = n

    def __iter__(self):
        n = self.n
        while n > 0:
            yield n
            n -= 1

    def __reversed__(self):
        n = 1
        while n <= self.n:
            yield n
            n += 1

9

generator

Copyright (C) 2016,  http://www.dabeaz.com 8-

Iterable Objects
>>> c = Countdown(5)
>>> for n in c:
...     print(n)
... 
5
4
3
2
1
>>> for n in reversed(c):
...     print(n)
... 
1
2
3
4
5
>>> 

10

238



Copyright (C) 2016,  http://www.dabeaz.com 8-

Exercise 8.1

11

Time : 20 Minutes

Copyright (C) 2016,  http://www.dabeaz.com 8-

Producers & Consumers
• Generators are closely related to various 

forms of "producer-consumer" programming

def follow(f):
    ...
    while True:
        ...
        yield line
        ...

12

for line in follow(f):
    ...

producer

consumer

• yield produces values

• for consume values

239



Copyright (C) 2016,  http://www.dabeaz.com 8-

Generator Pipelines

• You can use this aspect of generators to set 
up processing pipelines (like Unix pipes)

• Big picture:

13

• Processing pipes have an initial data 
producer, some set of intermediate 
processing stages, and a final consumer

producer processing processing consumer

Copyright (C) 2016,  http://www.dabeaz.com 8-

Generator Pipelines

14

• Producer is typically a generator (although it 
could also be a list or some other sequence)

• yield feeds data into the pipeline

producer processing processing consumer

def producer():
    ...
    yield item
    ...

240



Copyright (C) 2016,  http://www.dabeaz.com 8-

Generator Pipelines

15

• Consumer is just a simple for-loop

• It gets items and does something with them

producer processing processing consumer

def producer():
    ...
    yield item
    ...

def consumer(s):
    for item in s:
        ...

Copyright (C) 2016,  http://www.dabeaz.com 8-

Generator Pipelines

16

• Intermediate processing stages simultaneously 
consume and produce items

• They might modify the data stream

• They can also filter (discarding items)

producer processing processing consumer

def producer():
    ...
    yield item
    ...

def consumer(s):
    for item in s:
        ...

def processing(s):
    for item in s:
        ...
        yield newitem
        ...

241



Copyright (C) 2016,  http://www.dabeaz.com 8-

Generator Pipelines

17

• You will notice that data incrementally flows 
through the different functions

producer processing processing consumer

def producer():
    ...
    yield item
    ...

def consumer(s):
    for item in s:
        ...

def processing(s):
    for item in s:
        ...
        yield newitem
        ...

a = producer()

b = processing(a)

c = consumer(b)

• Pipeline setup (in your program)

Copyright (C) 2016,  http://www.dabeaz.com 8-

Exercise 8.2

18

Time : 15 minutes

242



Copyright (C) 2016,  http://www.dabeaz.com 8-

Yield as an Expression

• In generators, yield can be used as an expression

• For example, on the right side of an assignment

19

def match(pattern):
    print('Looking for %s' % pattern)
    while True:
        line = yield
        if pattern in line:
            print(line)

• Question : What is its value?

Copyright (C) 2016,  http://www.dabeaz.com 8-

Coroutines
• If you use yield like this, you get a "coroutine"

• It defines a function to which you send values

20

>>> g = match('python')
>>> next(g)              # Prime it (explained shortly)
Looking for python
>>> g.send('Yeah, but no, but yeah, but no')
>>> g.send('A series of tubes')
>>> g.send('python generators rock!')
python generators rock!
>>> 

• Sent values are returned by (yield)

243



Copyright (C) 2016,  http://www.dabeaz.com 8-

Coroutine Execution

• Execution is the same as for a generator

• When you call a coroutine, nothing happens

• They only run in response to next() and send() 
methods

21

>>> g = match('python')
>>> next(g)
Looking for python
>>> 

Notice that no 
output was 
produced

On first operation, 
coroutine starts 

running

Copyright (C) 2016,  http://www.dabeaz.com 8-

Coroutine Priming
• All coroutines must be "primed" by first calling 

next()  (or send(None))

• This advances execution to the location of the 
first yield expression.

22

next() advances the 
coroutine to the 

first yield expression

def match(pattern):
    print('Looking for %s' % pattern)
    while True:
        line = yield
        if pattern in line:
            print(line)

• At this point, it's ready to receive a value

244



Copyright (C) 2016,  http://www.dabeaz.com 8-

Using a Decorator

• Remembering to call next() is easy to forget

• Solved by wrapping coroutines with a decorator

23

def consumer(func):
    def start(*args,**kwargs):
        cr = func(*args,**kwargs)
        next(cr)
        return cr
    return start

@consumer
def match(pattern):
    ...

Copyright (C) 2016,  http://www.dabeaz.com 8-

Processing Pipelines

24

• Coroutines can also be used to set up pipes

coroutine coroutine coroutine
send() send() send()

• You just chain coroutines together and push 
data through the pipe with send() operations

245



Copyright (C) 2016,  http://www.dabeaz.com 8-

An Example

25

• A source that mimics Unix 'tail -f'
import time
def follow(filename, target):
    f = open(filename)
    f.seek(0,2)      # Go to the end of the file
    while True:
         line = f.readline()
         if line != '':
             target.send(line)
         else:
             time.sleep(0.1)    # Sleep briefly=

• A consumer that just prints the lines
@consumer
def printer():
    while True:
         line = yield
         print(line, end=' ')

Copyright (C) 2016,  http://www.dabeaz.com 8-

An Example

26

• A filter coroutine
@consumer
def match(pattern, target):
    while True:
        line = yield           # Receive a line
        if pattern in line:
            target.send(line)    # Send to next stage

• Hooking it up
follow('access-log',
       match('python',
       printer()))

follow() match() printer()
send() send()

• A picture

246



Copyright (C) 2016,  http://www.dabeaz.com 8-

Dataflow

27

• With coroutines, you can "fan out"

coroutine coroutine coroutine
send() send() send()

• More possibilities than a simple pipeline

coroutine

coroutine

send()

send()

Copyright (C) 2016,  http://www.dabeaz.com 8-

Exercise 8.3

28

Time : 15 Minutes

247



Copyright (C) 2016,  http://www.dabeaz.com 8-

Generator Control Flow

29

• Generators have support for forced 
termination and exception handling

• .close() method - terminates

• .throw() method - raise an exception

• Examples follow

Copyright (C) 2016,  http://www.dabeaz.com 8-

Closing a Generator

30

• Use .close() method to shutdown

def genfunc():
    ...
    try:
        yield item
    except GeneratorExit:
        # .close() was invoked
        # perform cleanup (if any)
        ...
        return

g = genfunc()     # A generator
...
g.close()

• This raises GeneratorExit at yield

248



Copyright (C) 2016,  http://www.dabeaz.com 8-

Raising Exceptions

31

• Use .throw(type [,val [, tb]]) for exceptions

def genfunc():
    ...
    try:
        yield item
    except RuntimeError as e:
        # Handle the exception
        ...

g = genfunc()     # A generator
...
g.throw(RuntimeError, "You're dead")

• This raises an exception at the yield

Copyright (C) 2016,  http://www.dabeaz.com 8-

Exercise 8.4

32

Time : 10 Minutes

249



Copyright (C) 2016,  http://www.dabeaz.com 8-

Managed Generators

33

• Observation:  A generator function can not 
execute solely by itself.  It must be driven by 
something else (e.g., for-loop, send(), etc)

• Observation: The yield statement represents a 
point of preemption.  Generators suspend at 
the yield and don't resume until instructed.

Copyright (C) 2016,  http://www.dabeaz.com 8-

Managed Generators

34

generator

generator

generator

generator

generator

generator

manager
next()   .send()
.throw() .close()

• Idea:  A manager will coordinate the execution 
of a collection of executing generators

250



Copyright (C) 2016,  http://www.dabeaz.com 8-

Managed Generators

35

• Typical applications

• Concurrency (tasklets, greenlets, etc.)

• Actors

• Event simulation

• This is a big topic

• Will give a simple example

Copyright (C) 2016,  http://www.dabeaz.com 8-

Example : Concurrency

36

• Define some "task" functions
def countdown(n):
    while n > 0:
        print('T-minus', n)
        yield
        n -= 1

def countup(n):
    x = 0
    while x < n:
        print('Up we go', x)
        yield
        x += 1

• Carefully observe:  just a bare "yield"

251



Copyright (C) 2016,  http://www.dabeaz.com 8-

Example : Concurrency

37

• Instantiate some tasks in a queue
tasks = deque([
    countdown(10),
    countdown(5),
    countup(20)
])

• Run a little scheduler (the manager)
def run():
    while tasks:
        t = tasks.popleft()      # Get a task
        try:
            next(t)              # Run to yield
            tasks.append(t)      # Reschedule
        except StopIteration:
            pass

Copyright (C) 2016,  http://www.dabeaz.com 8-

Example : Concurrency

38

• Output
T-minus 10
T-minus 5
Up we go 0
T-minus 9
T-minus 4
Up we go 1
T-minus 8
T-minus 4
Up we go 2
...

• We see tasks cycling, but there are no threads

252



Copyright (C) 2016,  http://www.dabeaz.com 8-

Exercise 8.5

39

Time : 20 Minutes

Copyright (C) 2016,  http://www.dabeaz.com 8-

Delegating Generation

40

• Problem: Library functions involving generators

def countdown(n):
    while n > 0:
        yield n
        n -= 1

• Example:  Generator Chaining

g1 = countdown(5)      # 5 4 3 2 1
g2 = countdown(10)     # 10 9 8 7 6 5 4 3 2 1

g = chain(g1, g2)      # 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1

• Problem: How do you write the chain() func?

253



Copyright (C) 2016,  http://www.dabeaz.com 8-

Delegating Generation

41

• Option 1: Drive the generator yourself
def chain(g1, g2):
    for x in g1:
        yield x
    for x in g2:
        yield x

• You need to manually control each generator 
with for-loops, send(), throw(), etc. 

• Can get quite complicated for coroutines

Copyright (C) 2016,  http://www.dabeaz.com 8-

Delegating Generation

42

• Option 2: Let Python drive it (yield from)
def chain(g1, g2):
    yield from g1
    yield from g2

• Whatever code normally drives the generators 
will run it for you

• Greatly simplifies managed generators

• Note: Requires Python 3.3 or newer.

254



Copyright (C) 2016,  http://www.dabeaz.com 8-

More Information

43

http://www.dabeaz.com/generators

• "Generator Tricks for Systems 
Programmers" tutorial from PyCon'08

• "A Curious Course on Coroutines and 
Concurrency" tutorial from PyCon'09

http://www.dabeaz.com/coroutines

• "Generators: The Final Frontier" tutorial 
from PyCon'14

http://www.dabeaz.com/finalgenerator

Copyright (C) 2016,  http://www.dabeaz.com 8-

Exercise 8.6

44

Time : 15 Minutes

255



Copyright (C) 2016,  http://www.dabeaz.com 9-

Modules and Packages
Section 9

1

Copyright (C) 2016,  http://www.dabeaz.com 9-

Introduction

• You've written some code

• Now you need to organize it

• Possibly give it to others

• How do you do it?

2

256



Copyright (C) 2016,  http://www.dabeaz.com 9-

Modules Revisited

• As you know, every source file is a module

• import statement loads and executes a module

# foo.py
def grok(a):
   ...
def spam(b):
   ...

import foo

a = foo.grok(2)
b = foo.spam('Hello')
...

3

Copyright (C) 2016,  http://www.dabeaz.com 9-

Module Objects
• Modules are objects

>>> import foo
>>> foo
<module 'foo' from 'foo.py'> 
>>>

4

• A "namespace" for definitions inside
>>> foo.grok(2)
>>>

• Actually a layer on top of a dictionary (globals)
>>> foo.__dict__['grok']
<function grok at 0x1006b6c80>
>>>

257



Copyright (C) 2016,  http://www.dabeaz.com 9-

Special Variables

• A few special variables defined in a module
__file__      # Name of the source file
__name__      # Name of the module
__doc__       # Module documentation string

5

• Example: "main" check
if __name__ == '__main__':
   print('Running as the main program')
else:
   print('Imported as a module using import')

Copyright (C) 2016,  http://www.dabeaz.com 9-

Import Implementation
• Import in a nutshell (pseudocode)

import types

def import_module(name):
    # locate the module and get source code
    filename = find_module(name)
    code = open(filename).read()

    # Create the enclosing module object
    mod = types.ModuleType(name)

    # Run it
    exec(code, mod.__dict__, mod.__dict__)
    return mod

6

• Source is exec'd in module dictionary

• Contents are whatever is left over

258



Copyright (C) 2016,  http://www.dabeaz.com 9-

Module Cache

• Each module is loaded only once

• Repeated imports just return a reference to 
the previously loaded module

• sys.modules is a dict of all loaded modules

7

>>> import sys
>>> list(sys.modules)
['copy_reg', '__main__', 'site', '__builtin__', 
'encodings', 'encodings.encodings', 'posixpath', ...]
>>> 

Copyright (C) 2016,  http://www.dabeaz.com 9-

Import Caching
• Import (pseudocode)

import types
import sys

def import_module(name):
    # Check for cached module
    if name in sys.modules:
        return sys.modules[name]
   
    filename = find_module(name)
    code = open(filename).read()
    mod = types.ModuleType(name)
    sys.modules[name] = mod

    exec(code, mod.__dict__, mod.__dict__)
    return mod

8

• There is more, but this is basically it

259



Copyright (C) 2016,  http://www.dabeaz.com 9-

from module import
• Selected symbols can be imported locally

# bar.py
from foo import grok

grok(2)

9

• Useful for frequently used names

• Confusion: This does not change how import 
works.  The entire module executes and is 
cached.  This merely copies a name.

grok = sys.modules['foo'].grok

Copyright (C) 2016,  http://www.dabeaz.com 9-

from module import *
• Takes all symbols from a module and places 

them into the caller's namespace
# bar.py
from foo import *

grok(2)
spam('Hello')
...

10

• However, it only applies to names that don't 
start with an underscore (_)

• _name often used when defining non-
imported values in a module.

260



Copyright (C) 2016,  http://www.dabeaz.com 9-

Module Reloading
• Modules can sometimes be reloaded

11

>>> import foo
...
>>> import importlib
>>> importlib.reload(foo)
<module 'foo' from 'foo.py'>
>>>

• It re-executes the module source on top of the 
already defined module dictionary
# pseudocode
def reload(mod):
    code = open(mod.__file__, 'r')
    exec(code, mod.__dict__, mod.__dict__)
    return mod

Copyright (C) 2016,  http://www.dabeaz.com 9-

Module Reloading Danger

• Module reloading is not advised

• Problem:  Existing instances of classes will 
continue to use old code after reload

• Problem: Doesn't update definitions loaded 
with 'from module import name' 

• Problem: Likely breaks code that performs 
typechecks or uses super()

12

261



Copyright (C) 2016,  http://www.dabeaz.com 9-

Locating Modules
• When looking for modules, Python first 

looks in the same directory as the source 
file that's executing the import

• If a module can't be found there, an internal 
module search path is consulted
>>> import sys
>>> sys.path
['',
 '/usr/local/lib/python35.zip',
 '/usr/local/lib/python3.5',
 '/usr/local/lib/python3.5/plat-darwin',
 '/usr/local/lib/python3.5/lib-dynload',
 '/usr/local/lib/python3.5/site-packages']

13

Copyright (C) 2016,  http://www.dabeaz.com 9-

Module Search Path

• sys.path contains search path

• Paths also added via environment variables

• Can manually adjust if you need to
import sys
sys.path.append('/project/foo/pyfiles')

14

% env PYTHONPATH=/project/foo/pyfiles python3
Python 3.5.0 (default, Oct 27 2015, 13:20:23) 
[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] 
>>> import sys
>>> sys.path
['', '/project/foo/pyfiles', 
 '/usr/local/lib/python35.zip', ... ]

262



Copyright (C) 2016,  http://www.dabeaz.com 9-

Exercise 9.1

15

10 minutes

Copyright (C) 2016,  http://www.dabeaz.com 9-

Organizing Libraries
• It is standard practice for Python libraries to be 

organized as a hierarchical set of modules that 
sit under a top-level package name

16

packagename
packagename.foo
packagename.bar
packagename.utils
packagename.utils.spam  
packagename.utils.grok
packagename.parsers
packagename.parsers.xml
packagename.parsers.json
...

• Other programming languages have a similar 
convention (e.g., Java)

263



Copyright (C) 2016,  http://www.dabeaz.com 9-

Naming Conventions

• It is standard practice for package and 
module names to be concise and lowercase

17

foo.py

• Use a leading underscore for modules that 
are meant to be private or internal

MyFooModule.pynot

_foo.py

• Don't use names that match common 
standard library modules (confusing)

packagename/
            math.py

Copyright (C) 2016,  http://www.dabeaz.com 9-

Flat vs. Deep

• As a general rule, Python programmers 
tend to prefer flat namespaces

18

import packagename.foo

• As opposed to deep hierarchies

import dabeaz.projects.packagename.libraries.util.foo

• It's not always possible in practice, but use 
common sense (don't over-engineer it and 
try to keep it as simple as it needs to be)

264



Copyright (C) 2016,  http://www.dabeaz.com 9-

Creating a Package
• To create the module library hierarchy, 

organize files on the filesystem in a 
directory with the desired structure

19

packagename/
            foo.py
            bar.py
            utils/
                  spam.py
                  grok.py
            parsers/
                  xml.py
                  json.py
...

Copyright (C) 2016,  http://www.dabeaz.com 9-

Creating a Package
• Add __init__.py files to each directory

• These can be empty, but they should exist

20

packagename/
            __init__.py
            foo.py
            bar.py
            utils/
                  __init__.py
                  spam.py
                  grok.py
            parsers/
                  __init__.py
                  xml.py
                  json.py
...

265



Copyright (C) 2016,  http://www.dabeaz.com 9-

Using a Package

• Once you have the __init__.py files, the import 
statement should just "work"
import packagename.foo
import packagename.parsers.xml

from packagename.parsers import xml

21

• Almost everything should work the same way 
that it did before except that import 
statements now have multiple levels

Copyright (C) 2016,  http://www.dabeaz.com 9-

Fixing Relative Imports
• Relative imports of submodules don't work

spam/
     __init__.py
     foo.py
     bar.py

22

# bar.py
import foo   # Fails (not found)

• The issue:  Resolving name clashes between 
top-level packages and submodules
spam/
     __init__.py
     os.py
     bar.py

# bar.py
import os   # ??? (uses stdlib)

• imports are always "absolute" (from top level)

266



Copyright (C) 2016,  http://www.dabeaz.com 9-

Package Relative Imports
• Consider a package

spam/
     __init__.py
     foo.py
     bar.py
     grok/
         __init__.py
         blah.py

23

• Package relative imports
# bar.py

from . import foo        # Imports ./foo.py
from .foo import name    # Load a specific name

from .grok import blah   # Imports ./grok/blah.py

Copyright (C) 2016,  http://www.dabeaz.com 9-

Package Environment
• Packages define a few useful variables

__package__        # Name of the enclosing package
__path__           # Search path for subcomponents

24

• Example: 
>>> import xml
>>> xml.__package__
'xml'
>>> xml.__path__
['/usr/local/lib/python3.5/xml']
>>>

• Useful if code needs to obtain information 
about its enclosing environment

267



Copyright (C) 2016,  http://www.dabeaz.com 9-

Exercise 9.2

25

10 minutes

Copyright (C) 2016,  http://www.dabeaz.com 9-

__init__.py Usage

• What are you supposed to do in those files?

• Main use: stitching together multiple source 
files into a "unified" top-level import 

26

268



Copyright (C) 2016,  http://www.dabeaz.com 9-

Module Assembly
• Consider two submodules in a package

27

spam/
     foo.py

     bar.py

# foo.py

class Foo(object):
    ...
    ...

# bar.py

class Bar(object):
    ...
    ...

• Suppose you wanted to combine them

Copyright (C) 2016,  http://www.dabeaz.com 9-

Module Assembly
• Combine in __init__.py

28

spam/
     foo.py

     bar.py

# foo.py

class Foo(object):
    ...
    ...

# bar.py

class Bar(object):
    ...
    ...

     __init__.py # __init__.py

from .foo import Foo
from .bar import Bar

269



Copyright (C) 2016,  http://www.dabeaz.com 9-

Module Assembly

• Users see a single unified top-level package

29

import spam

f = spam.Foo()
b = spam.Bar()
...

• Split across submodules is hidden

Copyright (C) 2016,  http://www.dabeaz.com 9-

Case Study
• The collections "module"

• It's actually a package with a few components

30

deque
defaultdict

Container
Hashable
Mapping
...

_collections.so

_collections_abc.py

from _collections import (
            deque, defaultdict )

from _collections_abc import *

class OrdererDict(dict):
    ...

class Counter(dict):
    ...

collections/__init__.py

270



Copyright (C) 2016,  http://www.dabeaz.com 9-

Controlling Exports

31

• Submodules should define __all__
# foo.py

__all__ = ['Foo']

class Foo(object):
    ...

• Controls 'from module import *'

• Allows easy combination in __init__.py

# bar.py

__all__ = ['Bar']

class Bar(object):
    ...

# __init__.py
from .foo import *
from .bar import *

__all__ = [ *foo.__all__, *bar.__all__ ]

Copyright (C) 2016,  http://www.dabeaz.com 9-

Module Splitting
• Suppose you have a large module

32

# spam.py

class Foo(object):
    ...
    ...

class Bar(object):
    ...
    ...

• You want to split it into multiple files

• But keep it as a single import

271



Copyright (C) 2016,  http://www.dabeaz.com 9-

Module Splitting
• Step 1: Turn into a directory with multiple files

33

spam/
     foo.py

     bar.py

# foo.py

class Foo(object):
    ...
    ...

# bar.py

class Bar(object):
    ...
    ...

• Split the code you wish

Copyright (C) 2016,  http://www.dabeaz.com 9-

Module Splitting
• Step 2: Stitch back together in __init__.py

34

spam/
     foo.py

     bar.py

# foo.py

class Foo(object):
    ...
    ...

# bar.py

class Bar(object):
    ...
    ...

# __init__.py

from .foo import Foo
from .bar import Bar

     __init__.py

272



Copyright (C) 2016,  http://www.dabeaz.com 9-

Exercise 9.3

35

20 minutes

Copyright (C) 2016,  http://www.dabeaz.com 9-

Import Machinery
• You can interact with import implementation

• Example: importing a module by name

36

from importlib import import_module

# import name
mod = import_module('name')

# from . import name
mod = import_module('name', __package__) 

• Potential use: Dynamic imports or imports from 
settings in a config file

• There is other useful functionality in importlib

273



Copyright (C) 2016,  http://www.dabeaz.com 9-

Exercise 9.4

37

10 minutes

Copyright (C) 2016,  http://www.dabeaz.com 9-

Main Modules

• python -m module

• Runs a specified module as a main program

38

spam/
     __init__.py
     foo.py
     bar.py

bash % python3 -m spam.foo      # Runs spam.foo as main

• Can use to enclose supporting scripts/applications 
within a package

274



Copyright (C) 2016,  http://www.dabeaz.com 9-

Main Entry Point

• __main__.py designates an entry point

• Makes a package directory executable

39

spam/
     __init__.py
     __main__.py                 # Starting module
     foo.py
     bar.py

bash % python3 -m spam           # Run package as main

• More useful than you might think

Copyright (C) 2016,  http://www.dabeaz.com 9-

Executable Subpackages
• Example

40

spam/
    __init__.py
    foo.py
    bar.py
    test/
         __init__.py
         __main__.py
         foo.py
         bar.py

• Could have a variety of such tools/utilities 
embedded within a package

• Nice feature: they stay with the package

bash % python3 -m spam.test

275



Copyright (C) 2016,  http://www.dabeaz.com 9-

Exercise 9.5

41

15 minutes

Copyright (C) 2016,  http://www.dabeaz.com 9-

Preparing For Distribution
• Now, suppose you want to give code to others

• To do this, you create a top-level project 
directory that includes everything

42

packagename/
     README.txt
     LICENSE.txt
     Doc/
     packagename/
            __init__.py
            foo.py
            bar.py
            utils/
                  __init__.py
                  spam.py
                  grok.py
            ...

Source code        
(a python package 

hierarchy)

Other 
support files

276



Copyright (C) 2016,  http://www.dabeaz.com 9-

The setup.py File
• Next, write a setup.py file using distutils

# setup.py
from distutils.core import setup

setup(name='packagename',
      version='1.0',
      author='Your Name',
      author_email='you@somemail.com',
      url='http://www.you.com/packagename',
      packages=['packagename', 'packagename.utils' ]
)

43

• Minimally includes the name of the 
package, version number, and a list of all 
package folders,

Copyright (C) 2016,  http://www.dabeaz.com 9-

Where to put setup.py?
• setup.py goes in the top-level directory

44

packagename/
     README.txt
     LICENSE.txt
     setup.py
     Doc/
         ...
     packagename/
            __init__.py
            foo.py
            bar.py
            utils/
                  __init__.py
                  spam.py
                  grok.py
            ...

277



Copyright (C) 2016,  http://www.dabeaz.com 9-

MANIFEST.in

• If you have additional directories and files 
such as documentation, examples, etc. you 
should also write a MANIFEST.in file

include *.txt
recursive-include examples *
recursive-include Doc *
...

45

• Here, you have to identify everything that's 
not part of the actual source code here

Copyright (C) 2016,  http://www.dabeaz.com 9-

Source Distributions

• Once you have setup.py, your code is now 
ready to distribute

bash % python setup.py sdist

• On UNIX, this creates a file such as
dist/packagename-1.0.tar.gz

• On Windows, a zip file is created
dist/packagename-1.0.zip

46

278



Copyright (C) 2016,  http://www.dabeaz.com 9-

Installing a Package
• Users install your package via pip

bash % python3 -m pip install packagename-1.0.tar.gz

47

• This will install the package in the system-
wide site-packages directory

• Might require admin/root permission

• Alternative: Use a virtual environment

/usr/local/lib/python3.5/site-packages

Copyright (C) 2016,  http://www.dabeaz.com 9-

User Local Installs

bash % python3 -m pip install --user packagename-1.0.tar.gz

• Installs code into a location such as this

48

• Users can optionally install a package into 
their own personal directory

~/.local/lib/python3.5/site-packages

• Not a bad option if you are just installing 
packages for yourself

279



Copyright (C) 2016,  http://www.dabeaz.com 9-

Exercise 9.6

49

10 minutes

280


