
Practical Python Programming
David M. Beazley

http://www.dabeaz.com

Edition: Fri May 8 11:41:56 2015

Copyright (C) 2010-2015
David M Beazley

All Rights Reserved

Practical Python Programming : Table of Contents

! 0. Course Setup ! ! ! ! ! ! ! ! 1
! 1. Introduction! ! ! ! ! ! ! ! 6
! 2. Working with Data! ! ! ! ! ! ! 51
! 3. Program Organization and Functions! ! ! ! ! 85
! 4. Modules and Libraries! ! ! ! ! ! ! 108
! 5. Classes! ! ! ! ! ! ! ! ! 173!
! 6. Inside the Python Object Model! ! ! ! ! 192
! 7. Documentation, Testing, and Debugging! ! ! ! 215
! 8. Iterators and Generators! ! ! ! ! ! 234
! 9. Working with Text!! ! ! ! ! ! ! 249
! 10. Some Advanced Topics! ! ! ! ! ! 266

Edition: Fri May 8 11:41:56 2015

Course Summary

This course is an introduction to Python primarily designed for programmers, scientists,
or engineers who already know another programming language, but are new to Python.
Various features of Python are introduced with a focus on using Python for various tasks
involving scripting, data analysis, and file processing. By the end of this course, you
will have an overview of most of Pythonʼs core features and know how to write short
programs.

System Requirements

The course assumes the use of Python 2.7 on any operating system platform. An op-
tional part of section 4 (modules) involves using numpy (http://numpy.scipy.org), Pandas
(http://pandas.pydata.org/) and matplotlib (http://matplotlib.sourceforge.net).

Support Files and Exercises

Support files and exercises must be downloaded at the following URL:

http://www.dabeaz.com/python/practicalpython.zip

This zip file needs to be extracted on your machine. You will find course exercises in
the practical-python/Exercises folder.

0. Course Setup

Course Setup 0-1
Required Files 0-2
Setting up Your Environment 0-3
Class Exercises 0-4
Solution Code 0-5
General Tips 0-6
Text Editors 0-7
Running IDLE (Windows) 0-8
Running IDLE (Mac/Unix) 0-9
Alternate Tools 0-10

1. Introduction to Python

Introduction to Python 1-1
What is Python? 1-2
Where to Get Python? 1-3
Python Versions 1-4
Why was Python Created? 1-5
Some Uses of Python 1-6
Python Non-Uses 1-7
Running Python 1-8
IDLE 1-9
IDLE on Windows 1-10
IDLE on other Systems 1-11
The Python Interpreter 1-12
Interactive Mode 1-13
Getting Help 1-16
Exercise 1.1 1-17
Creating Programs 1-18
Running Programs (IDLE) 1-22
Running Programs 1-23
A Sample Program 1-24
Exercise 1.2 1-27
Python 101 : Statements 1-28
Python 101 : Comments 1-29
Python 101: Variables 1-30
Python 101: Case Sensitivity 1-31
Python 101: Cleaning up 1-32
Python 101: Looping 1-33
Python 101 : Indentation 1-34
Python 101 : Conditionals 1-37
Python 101 : Relations 1-38
Python 101 : Truth Values 1-39
Python 101 : Printing 1-40
Python 101 : User Input 1-41
Python 101 : pass statement 1-42
Python 101 : Long Lines 1-43
Exercise 1.3 1-44
Basic Datatypes 1-45
Numbers 1-46
Booleans 1-47
Integers 1-48
Integer Operations 1-49
Integer Division 1-50

Floating point (float) 1-51
Floating point 1-52
Floating Point Operators 1-53
Converting Numbers 1-54
Strings 1-55
String Escape Codes 1-56
String Representation 1-57
More String Operations 1-59
String Methods 1-60
More String Methods 1-61
String Mutability 1-62
String Conversions 1-63
Special Strings 1-64
Exercise 1.4 1-65
String Splitting 1-66
Lists 1-67
Lists (cont) 1-68
More List Operations 1-69
List Searching 1-70
List Removal 1-71
List Iteration 1-72
List Sorting 1-73
Lists and Math 1-74
Exercise 1.5 1-75
File Input and Output 1-76
Reading File Data 1-77
Writing To a File 1-79
File Management 1-80
Exercise 1.6 1-81
Type Conversion 1-82
Simple Functions 1-83
Library Functions 1-84
Exception Handling 1-85
Exceptions 1-86
Summary 1-88
Exercise 1.7 1-89

2. Working with Data

Working with Data 2-1
Overview 2-2
Primitive Datatypes 2-3
None type 2-4
Data Structures 2-5
Tuples 2-6
Tuple Use 2-7
Tuples (cont) 2-8
Tuple Packing 2-9
Tuple Unpacking 2-10
Tuple Commentary 2-11
Dictionaries 2-12
Exercise 2.1 2-15
Containers 2-16
Lists as a Container 2-17
List Construction 2-18
Dicts as a Container 2-19
Dict Construction 2-20

Dictionary Lookups 2-21
Sets 2-22
Set Example 2-23
Exercise 2.2 2-24
Formatted Output 2-25
String Formatting 2-26
Format Codes 2-27
format() Function 2-28
format() method 2-29
Exercise 2.3 2-30
Working with Sequences 2-31
Sequence Slicing 2-33
Extended Slices 2-34
Sequence Reductions 2-35
Iterating over a Sequence 2-36
Iteration Variables 2-37
break statement 2-38
continue statement 2-39
Looping over integers 2-40
Caution with range() 2-41
enumerate() Function 2-42
for and tuples 2-44
zip() Function 2-45
Exercise 2.4 2-46
List Comprehensions 2-47
List Comp: Examples 2-50
Historical Digression 2-51
List Comp. and Awk 2-52
Exercise 2.5 2-53
More details on objects 2-54
The Issue with Assignment 2-55
Assignment Example 2-56
Reassigning Values 2-58
Some Dangers 2-59
Identity and References 2-60
Shallow Copies 2-61
Deep Copying 2-62
Names, Values, Types 2-63
Type Checking 2-64
Everything is an object 2-65
First Class Objects 2-66
Summary 2-67
Exercise 2.6 2-68

3. Program Organization and
Function

Program Organization and Functio 3-1
Overview 3-2
Observation 3-3
What is a "Script?" 3-4
Problem 3-5
Defining Things 3-6
Defining Functions 3-7
What is a function? 3-8
Function Definitions 3-9
Bottom-up Style 3-10

Function Arguments 3-11
Function Design 3-12
Exercise 3.1 3-13
Default Arguments 3-14
Calling a Function 3-15
Keyword Arguments 3-16
Design Tip 3-17
Return Values 3-18
Multiple Return Values 3-19
Understanding Variables 3-20
Local Variables 3-21
Global Variables 3-22
Modifying Globals 3-23
Argument Passing 3-25
Understanding Assignment 3-26
Exercise 3.2 3-27
Error Checking 3-28
Exceptions 3-30
Builtin-Exceptions 3-34
Exception Values 3-35
Catching Multiple Errors 3-36
Catching All Errors 3-37
Exploding Heads 3-38
A Better Approach 3-39
Reraising an Exception 3-40
Exception Advice 3-41
finally statement 3-42
with statement 3-43
Program Exit 3-44
Exercise 3.3 3-45

4. Modules and Libraries

Modules and Libraries 4-1
Overview 4-2
Modules 4-3
Namespaces 4-4
Global Definitions 4-5
Modules as Environments 4-6
Module Execution 4-7
import as statement 4-8
from module import 4-9
from module import * 4-10
Be Explicit 4-12
Commentary 4-13
Main Functions 4-14
Main Module 4-15
__main__ check 4-16
Module Loading 4-18
Locating Modules 4-19
Module Search Path 4-20
Exercise 4.1 4-21
Standard Library 4-22
sys module 4-23
sys: Standard I/O 4-24
sys: Command Line Opts 4-26
Advanced Arguments 4-27

os Module 4-28
Environment Variables 4-29
Getting a Directory Listing 4-30
os.path Module 4-31
File Tests 4-32
Pathnames 4-33
File Metadata 4-34
Directory Walking 4-35
Shell Operations (shutil) 4-36
time module 4-37
datetime module 4-38
subprocess Module 4-39
Exercise 4.2 4-40
Data Handling 4-41
Regular Expressions 4-42
Regex Pattern Syntax 4-43
Regex Pattern Examples 4-44
Writing Regex Patterns 4-45
re Module 4-46
re: Groups 4-47
Match Objects 4-49
re: Comments 4-50
Exercise 4.3 4-51
XML Parsing 4-52
XML Example 4-53
XML Parsing 4-54
ElementTree Parsing 4-55
Obtaining Elements 4-56
Iterating over Elements 4-57
Element Attributes 4-58
JSON Encoding/Decoding 4-59
Binary Data 4-62
Binary File I/O 4-63
Binary Data Representation 4-64
Binary Data Packing 4-66
struct module 4-67
struct Example 4-70
Exercise 4.4 4-71
collections Module 4-72
deques 4-73
Counters 4-74
defaultdict 4-76
itertools 4-79
Data Grouping 4-80
Exercise 4.5 4-81
Third Party Modules 4-82
Some Notable Modules 4-83
Installing Modules 4-84
Platform Native Install 4-85
OS Package Manager 4-86
Manual Installation 4-87
pip/setuptools 4-88
Commentary 4-89
Summary 4-90
Exercise 4.6 4-91
Introduction to Numpy, Pandas, a 4-92
A Disclaimer 4-93
Working Environment 4-94

numpy 4-95
Numpy Arrays 4-96
Array Shape 4-97
Array Type 4-99
Array Access 4-100
Array Assignment 4-104
Array Math 4-107
Universal Functions 4-109
Big Picture 4-110
Array Conditionals 4-111
Matrices 4-113
Exercise data.1 4-115
Pandas 4-116
Dataframes 4-117
Filtering 4-120
Sorting 4-121
Grouping 4-122
Grouping/Aggregation 4-123
Comments 4-124
Exercise data.2 4-125
matplotlib 4-126
Matplotlib 4-127
Using Matplotlib 4-129
Exercise data.3 4-130

5. Classes and Objects

Classes and Objects 5-1
OO in a Nutshell 5-2
The class statement 5-4
Instances 5-5
__init__ method 5-6
Instance Data 5-7
Methods 5-8
Calling Other Methods 5-9
Exercise 5.1 5-10
Inheritance 5-11
Inheritance Example 5-13
Using Inheritance 5-15
"is a" relationship 5-17
object base class 5-18
Inheritance and Overriding 5-19
Inheritance and 5-20
Overriding Caution 5-21
Calling Other Methods 5-22
Multiple Inheritance 5-23
Exercise 5.2 5-24
Special Methods 5-25
String Conversions 5-26
Methods: Mathematics 5-28
Methods: Item Access 5-29
Odds and Ends 5-30
Defining Exceptions 5-31
Method Invocation 5-32
Bound Methods 5-33
Attribute Access 5-35
Summary 5-36

Exercise 5.3 5-37

6. The Inner Workings of Python
Objects

The Inner Workings of Python Obj 6-1
Overview 6-2
Dictionaries Revisited 6-3
Dicts and Modules 6-4
Dicts and Objects 6-5
Dicts and Instances 6-6
Dicts and Classes 6-8
Instances and Classes 6-9
Attribute Access 6-11
Modifying Instances 6-12
Reading Attributes 6-14
Exercise 6.1 6-16
How Inheritance Works 6-17
Reading Attributes 6-18
Single Inheritance 6-19
The MRO 6-20
Multiple Inheritance 6-21
Why super()? 6-26
Some Cautions 6-27
Classes and Encapsulation 6-28
A Problem 6-29
Python Encapsulation 6-30
Private Attributes 6-31
Problem: Simple Attributes 6-34
Managed Attributes 6-35
Properties 6-36
Uniform Access 6-41
Decorator Syntax 6-42
Properties and Accessors 6-43
__slots__ Attribute 6-44
Commentary 6-45
Exercise 6.2 6-46

7. Testing and Debugging

Testing and Debugging 7-1
Overview 7-2
Testing Rocks, Debugging Sucks 7-3
Testing Modules 7-4
Testing: doctest module 7-5
Using doctest 7-6
Doctest Caution 7-8
unittest Module 7-9
Using unittest 7-10
Running unittests 7-13
unittest comments 7-14
Third Party Test Tools 7-15
Exercise 7.1 7-16
logging Module 7-17
Exceptions Revisited 7-18

Using Logging 7-20
Logging Basics 7-21
Logging Configuration 7-22
Big Picture 7-23
Exercise 7.2 7-24
Assertions 7-25
Contract Programming 7-26
Optimized mode 7-27
__debug__ variable 7-28
Error Handling 7-29
The Python Debugger 7-30
Python Debugger 7-32
Remote Debugging 7-34
Profiling 7-35
Profile Sample Output 7-36
Summary 7-37
Exercise 7.3 7-38

8. Generators

Generators 8-1
Iteration 8-2
Iteration Everywhere 8-3
Iteration: Protocol 8-4
Supporting Iteration 8-6
The itertools Module 8-7
Exercise 8.1 8-8
Customizing Iteration 8-9
Generators 8-10
Generator Functions 8-11
Exercise 8.2 8-14
Producers & Consumers 8-15
Generator Pipelines 8-16
Exercise 8.3 8-21
Generator Expressions 8-22
Exercise 8.4 8-25
Why Use Generators? 8-26
The itertools Module 8-29
More Information 8-30

9. Working with Text

Text I/O Handling 9-1
Overview 9-2
Generating Text 9-3
String Concatenation 9-4
String Joining 9-5
String Joining Example 9-6
String Interpolation 9-7
Built-in Formatting 9-8
Template Strings 9-9
Exercise 9.1 9-10
Text Input/Output 9-11
Line Handling 9-12
Universal Newline 9-14
Text Encoding 9-16

International Characters 9-17
Unicode 9-18
Unicode Characters 9-19
Unicode Charts 9-20
Using Unicode Charts 9-21
Unicode Representation 9-23
Unicode I/O 9-24
Unicode File I/O 9-25
Unicode Encoding 9-26
Encoding Errors 9-27
Finding the Encoding 9-30
Unicode Everywhere 9-31
A Caution 9-32
Exercise 9.2 9-33

10. A Few Advanced Topics

A Few Advanced Topics 10-1
Overview 10-2
Variable Arguments 10-3
Passing Tuples and Dicts 10-6
Exercise 10.1 10-7
List Sorting Revisited 10-8
List Sorting 10-9
Callback Functions 10-11
Anonymous Functions 10-12
Using lambda 10-13
lambda and map() 10-14
Advice on Lambda 10-15
Exercise 10.2 10-16
Returning Functions 10-17
Local Variables 10-18
Closures 10-19
Using Closures 10-21
Delayed Evaluation 10-22
Exercise 10.3 10-24
Function Decorators 10-25
An Example 10-26
Observation 10-27
An Example 10-28
Decorators 10-30
Using Decorators 10-31
Commentary 10-32
Exercise 10.4 10-33
Decorated Methods 10-34
Static Methods 10-35
Using Static Methods 10-36
Class Methods 10-37
Using Class Methods 10-38
Exercise 10.5 10-40
Packages 10-41
Creating a Package 10-42
Using a Package 10-44
__init__.py files 10-45
Package Issues 10-46
Exercise 10.6 10-47
That's All Folks! 10-48

Advanced Topics 10-49
Shameless Plug 10-50

Copyright (C) 2014, http://www.dabeaz.com 0-

Course Setup
Section 0

1

Copyright (C) 2014, http://www.dabeaz.com 0-

Required Files

• Where to get Python (if not installed)

2

http://www.python.org

• Exercises for this class

http://www.dabeaz.com/python/practicalpython.zip

1

Copyright (C) 2014, http://www.dabeaz.com 0-

Setting up Your Environment
• Extract practical-python on your machine

3

• This folder is where you will do your work

Copyright (C) 2014, http://www.dabeaz.com 0-

Class Exercises
• Exercise descriptions are found in

4

practical-python/Exercises/index.html

• All exercises have solution code

Look for the link at the bottom!

2

Copyright (C) 2014, http://www.dabeaz.com 0-

Solution Code

• Fully working solution code is found in

5

practical-python/Solutions/

• It's okay to look at it, copy it, etc.

• However, I encourage you to try and come up
with your own solution first.

Copyright (C) 2014, http://www.dabeaz.com 0-

General Tips
• We will be writing a lot of programs that

access data files in practical-python/Data

• Save your programs in the "practical-python/"
directory so that the names of these files are
easy to access.

• Some exercises are more difficult than others.
Please copy code from the solution and study
it if necessary.

6

3

Copyright (C) 2014, http://www.dabeaz.com 0-

Text Editors

• You may use any text editor that you are familiar
with for this course (e.g., vim, emacs, etc.)

• Python also comes with a simple development
environment called IDLE.

• It's not the most advanced tool, but it works

• Follow the instructions on the next two slides to
start it in the correct environment

7

Copyright (C) 2014, http://www.dabeaz.com 0-

Running IDLE (Windows)
• Find RunIDLE in the practical-python/ folder

• Double-click to start the IDLE environment

8

4

Copyright (C) 2014, http://www.dabeaz.com 0-

Running IDLE (Mac/Unix)

• Go into the practical-python/ directory

• Type the following command in a command shell

9

% python -m idlelib.idle

• Note: Typing 'idle' at the shell might also work.

Note: IDLE has known issues on the Mac. You
may need to install a new version of Python to
use it effectively.

Copyright (C) 2014, http://www.dabeaz.com 0-

Alternate Tools
• Some free alternatives to IDLE

• PyCharm

• PyScripter

• Komodo Edit

• Eclipse with Pydev

• Wing IDE

• Search on Google for more details

10

5

Copyright (C) 2014, http://www.dabeaz.com 1-

Introduction to Python
Section 1

1

Copyright (C) 2014, http://www.dabeaz.com 1-

What is Python?

• An interpreted high-level programming language.

• Similar to Perl, Ruby, Tcl, and other so-called
"scripting languages."

• Created by Guido van Rossum around 1990.

• Named in honor of Monty Python

2

6

Copyright (C) 2014, http://www.dabeaz.com 1-

Where to Get Python?

3

http://www.python.org

• Downloads

• Documentation and tutorial

• Community Links

• Third party packages

• News and more

Copyright (C) 2014, http://www.dabeaz.com 1-

Python Versions

4

• Most users use "CPython"

• Version 2.X (most common)

• Version 3.X (bleeding edge, the future)

• Alternative implementations

• Jython

• IronPython

• PyPy

7

Copyright (C) 2014, http://www.dabeaz.com 1-

Why was Python Created?

5

"My original motivation for creating Python was
the perceived need for a higher level language
in the Amoeba [Operating Systems] project. I
realized that the development of system
administration utilities in C was taking too long.
Moreover, doing these things in the Bourne
shell wouldn't work for a variety of reasons. ...
So, there was a need for a language that would
bridge the gap between C and the shell."

- Guido van Rossum

Copyright (C) 2014, http://www.dabeaz.com 1-

Some Uses of Python
• Text processing/data processing

• Application scripting

• Systems administration/programming

• Internet programming

• Graphical user interfaces

• Testing

• Writing quick "throw-away" code

6

8

Copyright (C) 2014, http://www.dabeaz.com 1-

Python Non-Uses
• Device drivers and low-level systems

• Computer graphics, visualization, and games

• Numerical algorithms

7

Comment : Python is still used in these
application domains, but only as a high-level
control language. Important computations are
actually carried out in C, C++, Fortran, etc. For
example, you would not implement matrix-
multiplication in Python.

Copyright (C) 2014, http://www.dabeaz.com 1-

Running Python
• Python programs run inside an interpreter

• The interpreter is a simple "console-based"
application that normally starts from a
command shell (e.g., the Unix shell)
bash % python
Python 2.7.3 (r271:86832, Feb 27 2011, 11:47:28)
[GCC 4.2.1 (Apple Inc. build 5664)] on darwin
Type "help", "copyright", "credits" or "license"
>>>

8

• Expert programmers usually have no problem
using the interpreter in this way, but it's not so
user-friendly for beginners

9

Copyright (C) 2014, http://www.dabeaz.com 1-

IDLE

• Python includes a simple integrated
development called IDLE (which is another
Monty Python reference)

• It's not the most sophisticated environment
but it's already installed and it works

• Most working Python programmers tend to
use something else, but it is fine for this class.

9

Copyright (C) 2014, http://www.dabeaz.com 1-

IDLE on Windows
• Look for it in the "Start" menu

10

10

Copyright (C) 2014, http://www.dabeaz.com 1-

IDLE on other Systems
• Launch a terminal or command shell

bash % python -m idlelib.idle

11

• Type the following command to launch IDLE

Copyright (C) 2014, http://www.dabeaz.com 1-

The Python Interpreter

• When you start Python, you get an
"interactive" mode where you can
experiment

• If you start typing statements, they will
run immediately

• No edit/compile/run/debug cycle

12

11

Copyright (C) 2014, http://www.dabeaz.com 1-

Interactive Mode
• The interpreter runs a "read-eval" loop

>>> print "hello world"
hello world
>>> 37*42
1554
>>> for i in range(5):
... print i
...
0
1
2
3
4
>>>

• Executes simple statements typed in directly

• Very useful for debugging, exploration
13

Copyright (C) 2014, http://www.dabeaz.com 1-

Interactive Mode
• Some notes on using the interactive shell

>>> print "hello world"
hello world
>>> 37*42
1554
>>> for i in range(5):
... print i
...
0
1
2
3
4
>>>

14

>>> is the interpreter
prompt for starting a

new statement

... is the interpreter
prompt for continuing
a statement (it may be
blank in some tools) Enter a blank line to

finish typing and to run

12

Copyright (C) 2014, http://www.dabeaz.com 1-

Interactive Mode

• Use underscore (_) for the last result
>>> 37*42
1554
>>> _ * 2
3108
>>> _ + 50
3158
>>>

15

• Note: This only works in interactive mode
(you never use _ in a program)

Copyright (C) 2014, http://www.dabeaz.com 1-

Getting Help
• help(name) command

• Documentation at http://docs.python.org

16

>>> help(range)
Help on built-in function range in module __builtin__:

range(...)
 range([start,] stop[, step]) -> list of integers

 Return a list containing an arithmetic progression of integers.
 range(i, j) returns [i, i+1, i+2, ..., j-1]; start (!) defaults to 0.
 ...
>>>

• Type help() with no name for interactive help

13

Copyright (C) 2014, http://www.dabeaz.com 1-

Exercise 1.1

17

Time: 10 minutes

Copyright (C) 2014, http://www.dabeaz.com 1-

Creating Programs

• Programs are put in .py files
helloworld.py
print "hello world"

• Source files are simple text files

• Create with your favorite editor (e.g., emacs)

• Can also edit programs with IDLE or other
Python IDE (too many to list)

18

14

Copyright (C) 2014, http://www.dabeaz.com 1-

Creating Programs
• Creating a new program in IDLE

19

Copyright (C) 2014, http://www.dabeaz.com 1-

Creating Programs
• Editing a new program in IDLE

20

15

Copyright (C) 2014, http://www.dabeaz.com 1-

Creating Programs
• Saving a new Program in IDLE

21

Copyright (C) 2014, http://www.dabeaz.com 1-

Running Programs (IDLE)
• Select "Run Module" (F5)

• Will see output in IDLE shell window

22

16

Copyright (C) 2014, http://www.dabeaz.com 1-

Running Programs
• In production environments, Python may be

run from command line or a script

• Command line (Unix)
bash % python helloworld.py
hello world
bash %

• Command shell (Windows)
C:\SomeFolder>helloworld.py
hello world

C:\SomeFolder>c:\python27\python helloworld.py
hello world

23

Copyright (C) 2014, http://www.dabeaz.com 1-

A Sample Program
• The Sears Tower Problem

One morning, you go out and place a
dollar bill on the sidewalk by the Sears
tower. Each day thereafter, you go out
double the number of bills. How long
does it take for the stack of bills to exceed
the height of the tower?

24

17

Copyright (C) 2014, http://www.dabeaz.com 1-

A Sample Program
sears.py

bill_thickness = 0.11 * 0.001 # Meters (0.11 mm)
sears_height = 442 # Height (meters)
num_bills = 1
day = 1

while num_bills * bill_thickness < sears_height:
 print day, num_bills, num_bills * bill_thickness
 day = day + 1
 num_bills = num_bills * 2

print "Number of days", day
print "Number of bills", num_bills
print "Final height", num_bills * bill_thickness

25

Copyright (C) 2014, http://www.dabeaz.com 1-

A Sample Program
• Output

bash % python sears.py
1 1 0.00011
2 2 0.00022
3 4 0.00044
4 8 0.00088
5 16 0.00176
6 32 0.00352
...
21 1048576 115.34336
22 2097152 230.68672
Number of days 23
Number of bills 4194304
Final height 461.37344

26

18

Copyright (C) 2014, http://www.dabeaz.com 1-

Exercise 1.2

27

Time: 10 minutes

Copyright (C) 2014, http://www.dabeaz.com 1-

Python 101 : Statements

• A Python program is a sequence of statements

• Each statement is terminated by a newline

• Statements are executed one after the other
until you reach the end of the file.

• When there are no more statements, the
program stops

28

19

Copyright (C) 2014, http://www.dabeaz.com 1-

Python 101 : Comments

• Comments are denoted by #
This is a comment
height = 442 # Meters

29

• Extend to the end of the line

• There are no block comments in Python
(e.g., /* ... */).

Copyright (C) 2014, http://www.dabeaz.com 1-

Python 101: Variables
• A variable is just a name for some value

• Variable names follow same rules as C
[A-Za-z_][A-Za-z0-9_]*

• You do not declare types (int, float, etc.)
height = 442 # An integer
height = 442.0 # Floating point
height = "Really tall" # A string

• Differs from C++/Java where variables have a
fixed type that must be declared.

30

20

Copyright (C) 2014, http://www.dabeaz.com 1-

Python 101: Case Sensitivity
• Python is case sensitive

• These are all different variables:

31

name = "Jake"
Name = "Elwood"
NAME = "Guido"

• Language statements are always lower-case
print "Hello World" # OK
PRINT "Hello World" # ERROR

while x < 0: # OK
WHILE x < 0: # ERROR

• So, no shouting please...

Copyright (C) 2014, http://www.dabeaz.com 1-

Python 101: Cleaning up

• Python has garbage collection

• Values are destroyed when no longer used

32

s = "Guido"
s = 42 # Previous value destroyed

• Or you can delete manually
del s

• Mostly, you don't worry about it (just works)

21

Copyright (C) 2014, http://www.dabeaz.com 1-

Python 101: Looping

• The while statement executes a loop

• Executes the indented statements
underneath while the condition is true

33

while num_bills * bill_thickness < sears_height:
 print day, num_bills, num_bills * bill_thickness
 day = days + 1
 num_bills = num_bills * 2

Copyright (C) 2014, http://www.dabeaz.com 1-

while num_bills * bill_thickness < sears_height:
 print day, num_bills, num_bills * bill_thickness
 day = days + 1
 num_bills = num_bills * 2

Python 101 : Indentation

• Indentation used to denote blocks of code

• Indentation must be consistent

(error)

• Colon (:) indicates the start of a block

while num_bills * bill_thickness < sears_height:

34

22

Copyright (C) 2014, http://www.dabeaz.com 1-

Python 101 : Indentation

35

• Mixing tabs/spaces can explode heads

World
World
World
World
World
Hello
World
World
World
World
World
Done

output

Python tab stops are every 8
characters, but the above editor is
showing 4 characters. Second 'print'
is indented using spaces and aligns
with the first tab. DON'T USE TABS!

Copyright (C) 2014, http://www.dabeaz.com 1-

Python 101 : Indentation

• There is a preferred indentation style

• Always use spaces

• Use 4 spaces per level

• Avoid tabs (convert to spaces)

• Always use a Python-aware editor

36

23

Copyright (C) 2014, http://www.dabeaz.com 1-

Python 101 : Conditionals
• If-else

if a < b:
 print "Computer says no"
else:
 print "Computer says yes"

• If-elif-else
if a == '+':
 op = PLUS
elif a == '-':
 op = MINUS
elif a == '*':
 op = TIMES
else:
 op = UNKNOWN

37

Copyright (C) 2014, http://www.dabeaz.com 1-

Python 101 : Relations

38

• Relational operators
< > <= >= == !=

• Boolean expressions (and, or, not)

if b >= a and b <= c:
 print "b is between a and c"

if not (b < a or b > c):
 print "b is still between a and c"

24

Copyright (C) 2014, http://www.dabeaz.com 1-

Python 101 : Truth Values

• Evaluates as "True"

• Non-zero numbers

• Non-empty strings

• Non-empty containers (lists, etc.)

• Evaluates as "False"

• 0 (Zero)

• Empty strings or containers

39

if x:
 ... statements ...

Copyright (C) 2014, http://www.dabeaz.com 1-

Python 101 : Printing
• The print statement

print x
print x,y,z
print "Your name is", name
print x, # Omits newline

• Produces a single line of text

• Items are separated by spaces

• Always prints a newline unless a trailing
comma is added after last item

40

25

Copyright (C) 2014, http://www.dabeaz.com 1-

Python 101 : User Input

• To read a line of typed user-input

name = raw_input("Enter your name:")

• Prints a prompt, returns the typed response

• This might be useful for small programs or
for simple debugging

• It is not widely used for real programs (we're
rarely going to use it in this class)

41

Copyright (C) 2014, http://www.dabeaz.com 1-

Python 101 : pass statement
• Sometimes you will need to specify an

empty block of code (like {} in C/Java)

if name in namelist:
 # Not implemented yet (or nothing)
 pass
else:
 statements

42

• pass is a "no-op" statement

• It does nothing, but serves as a placeholder
for statements (possibly to be added later)

26

Copyright (C) 2014, http://www.dabeaz.com 1-

Python 101 : Long Lines
• Sometimes you get long statements that you

want to break across multiple lines

• Use the line continuation character (\)
if product=="game" and type=="pirate memory" \
 and age >= 4 and age <= 8:
 print "I'll take it!"

43

• However, not needed for code in (), [], or {}

if (product=="game" and type=="pirate memory"
 and age >= 4 and age <= 8):
 print "I'll take it!"

Copyright (C) 2014, http://www.dabeaz.com 1-

Exercise 1.3

44

Time: 15 minutes

27

Copyright (C) 2014, http://www.dabeaz.com 1-

Basic Datatypes

• Python only has a few primitive types of data

• Numbers

• Strings (character text)

45

Copyright (C) 2014, http://www.dabeaz.com 1-

Numbers

• Python has 4 types of numbers

• Booleans

• Integers

• Floating point

• Complex (imaginary numbers)

46

28

Copyright (C) 2014, http://www.dabeaz.com 1-

Booleans

• Two values: True, False
a = True
b = False

• Evaluated as integers with value 1,0
c = 4 + True # c = 5
d = False
if d == 0:
 print "d is False"

• Although doing that in practice would be odd

47

Copyright (C) 2014, http://www.dabeaz.com 1-

Integers
• Signed values of arbitrary size

a = 37
b = -299392993727716627377128481812241231
c = 0x7fa8 # Hexadecimal
d = 0o253 # Octal
e = 0b10001111 # Binary

• There are two internal representations

• int : Small values (less than 32-bits in size)

• long : Large values (arbitrary size)

• Sometimes see 'L' shown on end of large values

48

>>> b
-299392993727716627377128481812241231L

29

Copyright (C) 2014, http://www.dabeaz.com 1-

Integer Operations
+ Add
- Subtract
* Multiply
/ Divide
// Floor divide
% Modulo
** Power
<< Bit shift left
>> Bit shift right
& Bit-wise AND
| Bit-wise OR
^ Bit-wise XOR
~ Bit-wise NOT
abs(x) Absolute value
pow(x,y[,z]) Power with optional modulo (x**y)%z
divmod(x,y) Division with remainder

49

Copyright (C) 2014, http://www.dabeaz.com 1-

Integer Division
• Classic division (/) - truncates

>>> 5/4
1
>>>

• Floor division (//) - truncates (same)
>>> 5//4
1
>>>

• Future division (/) - Converts to float
>>> from __future__ import division
>>> 5/4
1.25

• In Python 3, / always produces a float

• If truncation is intended, use //
50

30

Copyright (C) 2014, http://www.dabeaz.com 1-

Floating point (float)

• Use a decimal or exponential notation
a = 37.45
b = 4e5
c = -1.345e-10

• Represented as double precision using the
native CPU representation (IEEE 754)

17 digits of precision
Exponent from -308 to 308

• Same as the C double type

51

Copyright (C) 2014, http://www.dabeaz.com 1-

Floating point
• Be aware that floating point numbers are

inexact when representing decimal values.
>>> a = 2.1 + 4.2
>>> a == 6.3
False
>>> a
6.300000000000001
>>>

52

• This is not Python, but the underlying floating
point hardware on the CPU.

• The result of a calculation may not be quite
what you expect (emphasis, not a Python bug)

31

Copyright (C) 2014, http://www.dabeaz.com 1-

Floating Point Operators
+ Add
- Subtract
* Multiply
/ Divide
% Modulo (remainder)
** Power
pow(x,y [,z]) Power modulo (x**y)%z
abs(x) Absolute value
divmod(x,y) Division with remainder

• Additional functions are in the math module
import math
a = math.sqrt(x)
b = math.sin(x)
c = math.cos(x)
d = math.tan(x)
e = math.log(x)

53

Copyright (C) 2014, http://www.dabeaz.com 1-

Converting Numbers
• Type name can be used to convert

a = int(x) # Convert x to integer
b = float(x) # Convert x to float

• Example:
>>> a = 3.14159
>>> int(a)
3
>>>

• Also work with strings containing numbers
>>> a = "3.14159"
>>> float(a)
3.14159
>>>

54

32

Copyright (C) 2014, http://www.dabeaz.com 1-

Strings
• Written in programs with quotes

a = "Yeah but no but yeah but..."

b = 'computer says no'

c = '''
Look into my eyes, look into my eyes,
the eyes, the eyes, the eyes,
not around the eyes,
don't look around the eyes,
look into my eyes, you're under.
'''

• Standard escape characters work (e.g., '\n')

• Triple quotes capture all literal text enclosed

55

Copyright (C) 2014, http://www.dabeaz.com 1-

String Escape Codes

'\n' Line feed
'\r' Carriage return
'\t' Tab
'\xhh' Hexadecimal value
'\”' Literal quote
'\\' Backslash

• In quotes, standard escape codes work

56

• The codes are inspired by C

33

Copyright (C) 2014, http://www.dabeaz.com 1-

String Representation

• An ordered sequence of bytes (characters)

57

• Stores 8-bit data (ASCII)

• May contain binary data, control characters, etc.

• Strings are frequently used for both text and
for raw-data of any kind

Copyright (C) 2014, http://www.dabeaz.com 1-

String Representation
• Strings work like an array : s[n]

a = "Hello world"
b = a[0] # b = 'H'
c = a[4] # c = 'o'
d = a[-1] # d = 'd' (Taken from end of string)

• Slicing/substrings : s[start:end]
d = a[:5] # d = "Hello"
e = a[6:] # e = "world"
f = a[3:8] # f = "lo wo"
g = a[-5:] # g = "world"

• Concatenation (+)
a = "Hello" + "World"
b = "Say " + a

58

34

Copyright (C) 2014, http://www.dabeaz.com 1-

More String Operations
• Length (len)

>>> s = "Hello"
>>> len(s)
5
>>>

• Membership test (in, not in)
>>> 'e' in s
True
>>> 'x' in s
False
>>> "hi" not in s
True

59

• Replication (s*n)
>>> s = "Hello"
>>> s*5
'HelloHelloHelloHelloHello'
>>>

Copyright (C) 2014, http://www.dabeaz.com 1-

String Methods

• Stripping any leading/trailing whitespace
t = s.strip()

• Case conversion
t = s.lower()
t = s.upper()

• Replacing text
t = s.replace("Hello","Hallo")

60

• Strings have "methods" that perform various
operations with the string data.

35

Copyright (C) 2014, http://www.dabeaz.com 1-

More String Methods
s.endswith(suffix) # Check if string ends with suffix
s.find(t) # First occurrence of t in s
s.index(t) # First occurrence of t in s
s.isalpha() # Check if characters are alphabetic
s.isdigit() # Check if characters are numeric
s.islower() # Check if characters are lower-case
s.isupper() # Check if characters are upper-case
s.join(slist) # Joins lists using s as delimiter
s.lower() # Convert to lower case
s.replace(old,new) # Replace text
s.rfind(t) # Search for t from end of string
s.rindex(t) # Search for t from end of string
s.split([delim]) # Split string into list of substrings
s.startswith(prefix) # Check if string starts with prefix
s.strip() # Strip leading/trailing space
s.upper() # Convert to upper case

61

• Consult a reference for gory details

Copyright (C) 2014, http://www.dabeaz.com 1-

String Mutability

• Strings are "immutable" (read only)

• Once created, the value can't be changed
>>> s = "Hello World"
>>> s[1] = 'a'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment
>>>

62

• All operations and methods that manipulate
string data always create new strings

36

Copyright (C) 2014, http://www.dabeaz.com 1-

String Conversions

• Use str() to convert a value to a string

• Resulting text is same as produced by print

>>> x = 42
>>> str(x)
'42'
>>>

63

Copyright (C) 2014, http://www.dabeaz.com 1-

Special Strings

u'Jalape\u00f1o' # Unicode (international chars)
b'\x12\x27\@\x00' # Bytes
r'c:\newdata\test' # Raw (uninterpreted backslash)

• String literals are sometimes prefixed by a
special code that affect semantics

• Unicode strings store multi-byte characters

• Raw strings leave backslashes intact

• 8-bit bytes only allowed in byte strings

64

37

Copyright (C) 2014, http://www.dabeaz.com 1-

Exercise 1.4

65

Time: 10 minutes

Copyright (C) 2014, http://www.dabeaz.com 1-

String Splitting
• Strings often represent fields of data

• To work with each field, split into a list

>>> line = 'GOOG,100,490.10'
>>> fields = line.split(',')
>>> fields
['GOOG', '100', '490.10']
>>>

66

• Example: When reading data from a file, you
might read each line and then split the line
into columns.

38

Copyright (C) 2014, http://www.dabeaz.com 1-

Lists
• A array of arbitrary values

names = ['Elwood', 'Jake', 'Curtis']
nums = [39, 38, 42, 65, 111]

• Adding new items (append, insert)

names.append('Murphy') # Adds at end
names.insert(2,'Aretha') # Inserts in middle

67

• Concatenation : s + t
s = [1, 2, 3]
t = ['a', 'b']

s + t [1, 2, 3, 'a', 'b']

Copyright (C) 2014, http://www.dabeaz.com 1-

Lists (cont)

• Negative indices are from the end
names[-1] 'Curtis'

68

• Lists are indexed by integers (starting at 0)
names = ['Elwood', 'Jake', 'Curtis']

names[0] 'Elwood'
names[1] 'Jake'
names[2] 'Curtis'

• Changing one of the items

names[1] = 'Joliet Jake'

39

Copyright (C) 2014, http://www.dabeaz.com 1-

More List Operations
• Length (len)

>>> names = ['Elwood','Jake','Curtis']
>>> len(names)
3
>>>

• Membership test (in, not in)
>>> 'Elwood' in names
True
>>> 'Britney' not in names
True
>>>

69

• Replication (s * n)
>>> s = [1, 2, 3]
>>> s * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]
>>>

Copyright (C) 2014, http://www.dabeaz.com 1-

List Searching

• Finding the first position of an item
>>> names = ['Elwood','Jake','Curtis']
>>> names.index('Curtis')
2
>>> names[2]
'Curtis'
>>>

70

40

Copyright (C) 2014, http://www.dabeaz.com 1-

List Removal

• Removing an item
names.remove('Curtis')

del names[2]

• Deleting an item by index

71

• Removal results in items moving down to fill
the space vacated (i.e., no "holes").

Copyright (C) 2014, http://www.dabeaz.com 1-

List Iteration

• Iterating over the list contents
for name in names:
 # use name
 ...

• Similar to a 'foreach' statement from other
programming languages

72

41

Copyright (C) 2014, http://www.dabeaz.com 1-

List Sorting

• Lists can be sorted "in-place" (sort method)
s = [10, 1, 7, 3]
s.sort() # s = [1, 3, 7, 10]

• Sorting in reverse order
s = [10, 1, 7, 3]
s.sort(reverse=True) # s = [10, 7, 3, 1]

• Sorting works with any ordered data
s = ['foo', 'bar', 'spam']
s.sort() # s = ['bar', 'foo', 'spam']

73

Copyright (C) 2014, http://www.dabeaz.com 1-

Lists and Math
• Caution : Lists weren't designed for "math"

>>> nums = [1, 2, 3, 4, 5]
>>> nums * 2
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
>>> nums + [10, 11, 12, 13, 14]
[1, 2, 3, 4, 5, 10, 11, 12, 13, 14]
>>>

74

• They don't represent vectors/matrices

• Not the same as in MATLAB, Octave, IDL, etc.

• There are some add-ons for this (e.g., numpy)

42

Copyright (C) 2014, http://www.dabeaz.com 1-

Exercise 1.5

75

Time: 10 minutes

Copyright (C) 2014, http://www.dabeaz.com 1-

File Input and Output
• Opening a file

f = open('foo.txt','r') # Open for reading
g = open('bar.txt','w') # Open for writing

• To read data

data = f.read([maxbytes]) # Read up to maxbytes bytes

• To write text to a file
g.write('some text')

• To close when you're done
f.close()

76

43

Copyright (C) 2014, http://www.dabeaz.com 1-

Reading File Data

• Reading an entire text-file line-by-line
f = open(filename,'r')
for line in f:
 # Process the line
 ...
f.close()

• Reading an entire file all at once as a string
f = open(filename,'r')
data = f.read()
f.close()

77

Copyright (C) 2014, http://www.dabeaz.com 1-

Reading File Data
• End-of-file indicated by an empty string

data = f.read(nbytes)
if data == '':
 # No data read. EOF
 ...

• Example: Reading a file in fixed-size chunks

78

f = open(filename,'r')
while True:
 chunk = f.read(chunksize)
 if chunk == '':
 break
 # Process the chunk
 ...
f.close()

44

Copyright (C) 2014, http://www.dabeaz.com 1-

Writing To a File

• Writing string data
f = open('outfile', 'w')
f.write('Hello World\n')
...
f.close()

• Redirecting the print statement

79

f = open('outfile', 'w')
print >>f, 'Hello World'
...
f.close()

Copyright (C) 2014, http://www.dabeaz.com 1-

File Management
• Files should be properly closed when done

f = open(filename, 'r')
Use the file f
...
f.close()

• In modern Python (2.6 or newer), use "with"
with open(filename, 'r') as f:
 # Use the file f
 ...

statements

• This automatically closes the file when
control leaves the indented code block

80

file f
closed here

45

Copyright (C) 2014, http://www.dabeaz.com 1-

Exercise 1.6

81

Time: 15 minutes

Copyright (C) 2014, http://www.dabeaz.com 1-

Type Conversion
• In Python, you must be careful about

converting data to an appropriate type
x = '37' # Strings
y = '42'
z = x + y # z = '3742' (concatenation)

x = 37
y = 42
z = x + y # z = 79 (integer +)

82

• Differs from Perl/PHP where "+" is assumed
to be numeric arithmetic (even on strings)
$x = '37';
$y = '42';
$z = $x + $y; # $z = 79

46

Copyright (C) 2014, http://www.dabeaz.com 1-

Simple Functions
• Use functions for code you want to reuse

def sumcount(n):
 '''Returns the sum of the first n integers'''
 total = 0
 while n > 0:
 total += n
 n -= 1
 return total

• Calling a function

a = sumcount(100)

83

• A function is just a series of statements that
perform some task and return a result

Copyright (C) 2014, http://www.dabeaz.com 1-

Library Functions

• Python comes with a large standard library

• Library modules accessed using import
import math
x = math.sqrt(10)

import urllib
u = urllib.urlopen('http://www.python.org/index.html')
data = u.read()

84

• Will cover in more detail later

47

Copyright (C) 2014, http://www.dabeaz.com 1-

Exception Handling
• Errors are reported as exceptions

• An exception causes the program to stop
>>> int('N/A')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'N/A'
>>>

85

• For debugging, message describes what
happened, where the error occurred, along
with a traceback.

Copyright (C) 2014, http://www.dabeaz.com 1-

Exceptions

• To catch, use try-except statement
for line in f:
 fields = line.split()
 try:
 shares = int(fields[1])
 except ValueError:
 print "Couldn't parse", line
 ...

86

• Exceptions can be caught and handled

Name must match the kind of error
you're trying to catch

>>> int('N/A')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'N/A'
>>>

48

Copyright (C) 2014, http://www.dabeaz.com 1-

Exceptions

• To raise an exception, use the raise statement
raise RuntimeError("What a kerfuffle")

87

% python foo.py
Traceback (most recent call last):
 File "foo.py", line 21, in <module>
 raise RuntimeError("What a kerfuffle")
RuntimeError: What a kerfuffle

• Will cause the program to abort with an
exception traceback (unless caught by try-
except)

Copyright (C) 2014, http://www.dabeaz.com 1-

Summary

• This has been an overview of simple Python

• Enough to write basic programs

• Just have to know the core datatypes and a
few basics (loops, conditions, etc.)

88

49

Copyright (C) 2014, http://www.dabeaz.com 1-

Exercise 1.7

89

Time: 15 minutes

50

Working with Data
Section 2

Copyright (C) 2014, http://www.dabeaz.com 2-

Overview

• Most programs work with data

• In this section, we look at how Python
programmers represent and work with data

• Common programming idioms

• How to (not) shoot yourself in the foot

2

51

Copyright (C) 2014, http://www.dabeaz.com 2-

Primitive Datatypes

• Python has a few primitive types of data

• Integers

• Floating point numbers

• Strings (text)

• Obviously, all programs use these

3

Copyright (C) 2014, http://www.dabeaz.com 2-

None type

• Nothing, nil, null, nada

logfile = None

• This is often used as a placeholder for
optional or missing value

4

if logfile:
 logfile.write('Some message')

• If you don't assign logfile to something, the
above code would crash (undefined variable)

52

Copyright (C) 2014, http://www.dabeaz.com 2-

Data Structures

• Real programs have more complex data

• Example: A holding of stock

100 shares of GOOG at $490.10

• An "object" with three parts

• Name ("GOOG", a string)

• Number of shares (100, an integer)

• Price (490.10, a float)

5

Copyright (C) 2014, http://www.dabeaz.com 2-

Tuples
• A collection of values grouped together

• Example:

s = ('GOOG', 100, 490.1)

• Sometimes the () are omitted in syntax
s = 'GOOG', 100, 490.1

• Special cases (0-tuple, 1-tuple)
t = () # An empty tuple
w = ('GOOG',) # A 1-item tuple

6

53

Copyright (C) 2014, http://www.dabeaz.com 2-

Tuple Use

• Tuples are usually used to represent simple
records and data structures

contact = ('David Beazley', 'dave@dabeaz.com')
stock = ('GOOG', 100, 490.1)
host = ('www.python.org', 80)

• Basically, a single "object" of multiple parts

• Analogy: A single row in a database table

7

Copyright (C) 2014, http://www.dabeaz.com 2-

Tuples (cont)
• Tuple contents are ordered (like an array)

s = ('GOOG',100, 490.1)
name = s[0] # 'GOOG'
shares = s[1] # 100
price = s[2] # 490.1

• However, the contents can't be modified
>>> s[1] = 75
TypeError: object does not support item assignment

• You can, however, make a new tuple
s = (s[0], 75, s[2])

8

54

Copyright (C) 2014, http://www.dabeaz.com 2-

Tuple Packing

• Tuples are focused on packing and unpacking
data, not storing distinct items in a list

• Packing multiple values into a tuple
s = ('GOOG', 100, 490.1)

• The tuple is then easy to pass around to
other parts of a program as a single object

9

Copyright (C) 2014, http://www.dabeaz.com 2-

Tuple Unpacking

• To use the tuple elsewhere, you typically
unpack its parts into variables

• Unpacking values from a tuple
(name, shares, price) = s

print "Cost", shares*price

• Note: The () syntax is sometimes omitted
name, shares, price = s

10

55

Copyright (C) 2014, http://www.dabeaz.com 2-

Tuple Commentary
• Are tuples just a read-only list? No.

• Tuples are most often used for a single record
consisting of multiple parts

11

• Lists are usually a collection of distinct items
(typically all of the same type)

record = ('GOOG', 100, 490.1)

names = ['Elwood', 'Jake', 'Curtis']

Copyright (C) 2014, http://www.dabeaz.com 2-

Dictionaries
• A hash table or associative array

• A collection of values indexed by "keys"

• The keys serve as field names

• Example:

s = {
 'name' : 'GOOG',
 'shares' : 100,
 'price' : 490.1
}

12

56

Copyright (C) 2014, http://www.dabeaz.com 2-

Dictionaries
• Getting values: Just use the key names

>>> print s['name'],s['shares']
GOOG 100
>>> s['price']
490.10
>>>

• Adding/modifying values : Assign to key names
>>> s['shares'] = 75
>>> s['date'] = '6/6/2007'
>>>

• Deleting a value
>>> del s['date']
>>>

13

Copyright (C) 2014, http://www.dabeaz.com 2-

Dictionaries

• Dictionaries are useful when

• there are many different values

• The values will be modified/manipulated

• You also get better code clarity

14

s['date'] s[4]vs

57

Copyright (C) 2014, http://www.dabeaz.com 2-

Exercise 2.1

Time : 10 minutes

15

Copyright (C) 2014, http://www.dabeaz.com 2-

Containers
• Programs often have to work many objects

• A portfolio of stocks

• A table of stock prices

• Three choices:

• Lists (ordered data)

• Dictionaries (unordered data)

• Sets (unordered collection)

16

58

Copyright (C) 2014, http://www.dabeaz.com 2-

Lists as a Container
• Use a list when the order of data matters

• Lists can hold any kind of object

• Example: A list of tuples

portfolio = [
 ('GOOG', 100, 490.1),
 ('IBM', 50, 91.3),
 ('CAT', 150, 83.44)
]

portfolio[0] ('GOOG', 100, 490.1)
portfolio[1] ('IBM', 50, 91.3)

17

Copyright (C) 2014, http://www.dabeaz.com 2-

List Construction
• Example of building a list from scratch

records = [] # Initial empty list

Use .append() to add more items
records.append(('GOOG', 100, 490.10))
records.append(('IBM', 50, 91.3))
...

18

• Example: Reading records from a file
records = [] # Initial empty list

f = open('portfolio.csv', 'r')
for line in f:
 row = line.split(',')
 records.append((row[0], int(row[1])), float(row[2]))

59

Copyright (C) 2014, http://www.dabeaz.com 2-

Dicts as a Container
• Dictionaries are useful if you want fast

random lookups (by key name)

• Example: A dictionary of stock prices
prices = {
 'GOOG' : 513.25,
 'CAT' : 87.22,
 'IBM' : 93.37,
 'MSFT' : 44.12
 ...
}

>>> prices['IBM']
93.37
>>> prices['GOOG']
513.25
>>>

19

Copyright (C) 2014, http://www.dabeaz.com 2-

Dict Construction
• Example of building a dict from scratch

prices = {} # Initial empty dict

Insert new items
prices['GOOG'] = 513.25
prices['CAT'] = 87.22
prices['IBM'] = 93.37

20

• Example: Populating from a file
prices = {} # Initial empty dict

f = open('prices.csv', 'r')
for line in f:
 row = line.split(',')
 prices[row[0]] = float(row[1])

60

Copyright (C) 2014, http://www.dabeaz.com 2-

Dictionary Lookups
• To test for existence of a key

if key in d:
 # Yes
else:
 # No

21

• Looking up a value that might not exist
name = d.get(key,default)

• Example:
>>> prices.get('IBM',0.0)
93.37
>>> prices.get('SCOX',0.0)
0.0
>>>

Copyright (C) 2014, http://www.dabeaz.com 2-

Sets
• Sets

tech_stocks = set(['IBM','AAPL','MSFT'])

• Holds collection of unordered items

• No duplicates, support common set ops
>>> stocks = set(['AA','MSFT','GE','CAT'])
>>> stocks | tech_stocks # Union
set(['AA', 'GE', 'IBM', 'AAPL', 'MSFT', 'CAT'])
>>> stocks & tech_stocks # Intersection
set(['MSFT'])
>>> stocks - tech_stocks # Difference
set(['AA', 'GE', 'CAT'])
>>>

22

• Useful for membership tests

61

Copyright (C) 2014, http://www.dabeaz.com 2-

Set Example
• Example: Eliminating duplicates from a list

names = ['IBM', 'AAPL', 'GOOG', 'IBM', 'GOOG', 'YHOO']

Eliminate duplicates while maintaining original order
seen = set()
unique_names = []

for name in names:
 if name not in seen:
 unique_names.append(name)
 seen.add(name)

print unique_names # ['IBM', 'AAPL', 'GOOG', 'YHOO']

23

Copyright (C) 2014, http://www.dabeaz.com 2-

Exercise 2.2

Time : 20 minutes

24

62

Copyright (C) 2014, http://www.dabeaz.com 2-

Formatted Output
• When working with data, you often want

to produce structured output (tables, etc.).

 Name Shares Price
---------- ---------- ----------
 AA 100 32.20
 IBM 50 91.10
 CAT 150 83.44
 MSFT 200 51.23
 GE 95 40.37
 MSFT 50 65.10
 IBM 100 70.44

25

Copyright (C) 2014, http://www.dabeaz.com 2-

String Formatting
• Formatting operator (%)

>>> 'The value is %d' % 3
'The value is 3'
>>> '%5d %-5d %10d' % (3,4,5)
' 3 4 5'
>>> '%0.2f' % (3.1415926,)
'3.14'

• Requires single item or a tuple on right

• Commonly used with print
print '%d %0.2f %s' % (index,val,label)

• Format codes are same as with C printf()

26

63

Copyright (C) 2014, http://www.dabeaz.com 2-

Format Codes
%d Decimal integer
%u Unsigned integer
%x Hexadecimal integer
%f Float as [-]m.dddddd
%e Float as [-]m.dddddde+-xx
%g Float, but selective use of E notation
%s String
%c Character
%% Literal %

%10d Decimal in a 10-character field (right align)
%-10d Decimal in a 10-character field (left align)
%0.2f Float with 2 digit precision
%40s String in a 40-character field (right align)
%-40s String in a 40-character field (left align)

27

Copyright (C) 2014, http://www.dabeaz.com 2-

format() Function

• Formatting of single values
>>> x = 12.3456
>>> format(x,"0.2f")
'12.35'
>>> format(x,">10.2f") # Right justify (>)
' 12.35'
>>> format(x,"<10.2f") # Left justify (<)
'12.35 '
>>> format(x,"^10.2f") # Centering (^)
' 12.35 '
>>> format(x,"=^10.2f") # Fill character (=)
'==12.35==='
>>>

28

• Note: format codes similar to % operator

64

Copyright (C) 2014, http://www.dabeaz.com 2-

format() method
• .format() method of strings

>>> 'The value is {0}'.format(3)
'The value is 3'
>>> '{0:5d} {1:<5d} {2:10d}'.format(3,4,5)
' 3 4 5'
>>> '{name} has {n} messages'.format(name='Dave', n=37)
'Dave has 37 messages'
>>>

• {n} placeholder replaced by argument n

• {keyword} replace by keyword argument

29

Copyright (C) 2014, http://www.dabeaz.com 2-

Exercise 2.3

Time : 20 minutes

30

65

Copyright (C) 2014, http://www.dabeaz.com 2-

Working with Sequences
• Python has three "sequence" datatypes

a = 'Hello' # String
b = [1, 4, 5] # List
c = ('GOOG', 100, 490.1) # Tuple

• Sequences are ordered : s[n]
a[0] 'H'
b[-1] 5
c[1] 100

• Sequences have a length : len(s)
len(a) 5
len(b) 3
len(c) 3

31

Copyright (C) 2014, http://www.dabeaz.com 2-

Working with Sequences
• Sequences can be replicated : s * n

>>> a = 'Hello'
>>> a * 3
'HelloHelloHello'
>>> b = [1, 2, 3]
>>> b * 2
[1, 2, 3, 1, 2, 3]
>>>

• Similar sequences can be concatenated : s + t
>>> a = (1, 2, 3)
>>> b = (4, 5)
>>> a + b
(1, 2, 3, 4, 5)
>>>

32

66

Copyright (C) 2014, http://www.dabeaz.com 2-

Sequence Slicing
• Slicing operator : s[start:end]

a = [0,1,2,3,4,5,6,7,8]

a[2:5] [2,3,4]

a[-5:] [4,5,6,7,8]

a[:3] [0,1,2]

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

• Indices must be integers

• Slices do not include end value

• If indices are omitted, they default to the
beginning or end of the list.

33

Copyright (C) 2014, http://www.dabeaz.com 2-

Extended Slices
• Extended slicing: s[start:end:step]

a = [0,1,2,3,4,5,6,7,8]

a[0:5:2] [0,2,4]

a[::-2] [8,6,4,2,0]

a[6:2:-1] [6,5,4,3]

• step indicates stride and direction

• end index is not included in result

• Go easy on it for code clarity

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

34

67

Copyright (C) 2014, http://www.dabeaz.com 2-

Sequence Reductions
• sum(s)

>>> s = [1, 2, 3, 4]
>>> sum(s)
10
>>>

• min(s), max(s)
>>> min(s)
1
>>> max(s)
4
>>> max(t)
'World'
>>>

35

Copyright (C) 2014, http://www.dabeaz.com 2-

Iterating over a Sequence

• The for-loop iterates over sequence data

• On each iteration of the loop, you get new
item of data to work with.

>>> s = [1, 4, 9, 16]
>>> for i in s:
... print i
...
1
4
9
16
>>>

36

68

Copyright (C) 2014, http://www.dabeaz.com 2-

Iteration Variables

• Each time through the loop, a new value is
placed into an iteration variable
for x in s:
 statements:

• Overwrites the previous value (if any)

iteration variable

• After the loop finishes, the variable retains
the last value

37

Copyright (C) 2014, http://www.dabeaz.com 2-

break statement

• Breaking out of a loop (exiting)
for name in namelist:
 if name == username:
 break
 ...
 ...
statements

38

• Only applies to the inner-most loop

69

Copyright (C) 2014, http://www.dabeaz.com 2-

continue statement

• Skipping to the next iteration

for line in lines:
 if line == '': # Skip empty lines
 continue
 # More statements
 ...

• Useful if the current item isn't of interest or
needs to be ignored in processing

39

Copyright (C) 2014, http://www.dabeaz.com 2-

Looping over integers

• xrange([start,] end [,step])
for i in xrange(100):
 # i = 0,1,...,99

for j in xrange(10,20):
 # j = 10,11,..., 19

for k in xrange(10,50,2):
 # k = 10,12,...,48

• Note: The ending value is never included
(this mirrors the behavior of slices)

• If you simply need to count, use xrange()

40

70

Copyright (C) 2014, http://www.dabeaz.com 2-

Caution with range()
• range([start,] end [,step])

x = range(100) # x = [0, 1,..., 99]
y = range(10, 20) # y = [10, 11,..., 19]
z = range(10, 50, 2) # z = [10, 12,..., 48]

• range() creates a list of integers

• Avoid this code (use xrange() instead)
for i in range(N): # Inefficient!
 statements

• xrange() computes values as needed instead

41

Copyright (C) 2014, http://www.dabeaz.com 2-

enumerate() Function

• enumerate(sequence [, start = 0])

• Provides a loop counter value

names = ['Elwood', 'Jake', 'Curtis']
for i,name in enumerate(names):
 # Loops with i = 0, name = 'Elwood'
 # i = 1, name = 'Jake'
 # i = 2, name = 'Curtis'
 ...

• Example: Keeping a line number
f = open(filename)
for lineno, line in enumerate(f, 1):
 ...

42

71

Copyright (C) 2014, http://www.dabeaz.com 2-

enumerate() Function

• enumerate() is a nice shortcut
for i,x in enumerate(s):
 statements

• Compare to:
i = 0
for x in s:
 statements
 i += 1

• Less typing and enumerate() runs slightly faster

43

Copyright (C) 2014, http://www.dabeaz.com 2-

for and tuples

• Looping with multiple iteration variables
points = [
 (1, 4),(10, 40),(23, 14),(5, 6),(7, 8)
]

for x,y in points:
 # Loops with x = 1, y = 4
 # x = 10, y = 40
 # x = 23, y = 14
 # ...

• Here, each tuple is unpacked into a set of
iteration variables.

tuples
are expanded

44

72

Copyright (C) 2014, http://www.dabeaz.com 2-

zip() Function
• Combines multiple sequences into tuples

columns = ['name', 'shares', 'price']
values = ['GOOG', 100, 490.1]

pairs = zip(a,b) # [('name','GOOG'), ('shares', 100),
 # ('price', 490.1)]

• One use, looping over over two sequences
for name, value in zip(columns,values):
 ...

45

• Another use: making dictionaries

d = dict(zip(columns,values))

Copyright (C) 2014, http://www.dabeaz.com 2-

Exercise 2.4

Time : 15 minutes

46

73

Copyright (C) 2014, http://www.dabeaz.com 2-

List Comprehensions
• Creates a new list by applying an operation

to each element of a sequence.
>>> a = [1, 2, 3, 4, 5]
>>> b = [2*x for x in a]
>>> b
[2, 4, 6, 8, 10]
>>>

• Another example:
>>> names = ['Elwood', 'Jake']
>>> a = [name.lower() for name in names]
>>> a
['elwood', 'jake']
>>>

47

Copyright (C) 2014, http://www.dabeaz.com 2-

List Comprehensions

• A list comprehension can also filter

>>> f = open('stockreport', 'r')
>>> goog = [line for line in f if 'GOOG' in line]
>>>

>>> a = [1, -5, 4, 2, -2, 10]
>>> b = [2*x for x in a if x > 0]
>>> b
[2, 8, 4, 20]
>>>

• Another example

48

74

Copyright (C) 2014, http://www.dabeaz.com 2-

List Comprehensions
• General syntax

[expression for names in sequence if condition]

• What it means
result = []
for names in sequence:
 if condition:
 result.append(expression)

• Can be used anywhere a sequence is expected
>>> a = [1, 2, 3, 4]
>>> sum([x*x for x in a])
30
>>>

49

Copyright (C) 2014, http://www.dabeaz.com 2-

List Comp: Examples

• List comprehensions are hugely useful

• Collecting the values of a specific field
stocknames = [s['name'] for s in stocks]

• Performing database-like queries
a = [s for s in stocks if s['price'] > 100
 and s['shares'] > 50]

• Data reductions over sequences

cost = sum([s['shares']*s['price'] for s in stocks])

50

75

Copyright (C) 2014, http://www.dabeaz.com 2-

Historical Digression

• List comprehensions come from math
a = [x*x for x in s if x > 0] # Python

a = { x2 | x ∈ s, x > 0 } # Math

• But most Python programmers would
probably just view this as a "cool shortcut"

51

• Implemented in several other languages

Copyright (C) 2014, http://www.dabeaz.com 2-

List Comp. and Awk

• For Unix hackers, there is a certain similarity
between list comprehensions and short
one-line awk commands

A Python List Comprehension
totalcost = sum([shares*price
 for name, shares, price in portfolio])

A Unix awk command
totalcost = `awk '{ total += $2*$3 } END { print total }'
 portfolio.dat`

52

• Applying an operation to every line of a file

76

Copyright (C) 2014, http://www.dabeaz.com 2-

Exercise 2.5

Time : 15 Minutes

53

Copyright (C) 2014, http://www.dabeaz.com 2-

More details on objects

• So far: a tour of the most common types

• Have skipped some critical details

• Memory management

• Copying

• Type checking

54

77

Copyright (C) 2014, http://www.dabeaz.com 2-

The Issue with Assignment
• Many operations in Python are related to

"assigning" or "storing" values

55

a = value # Assignment to a variable
s[n] = value # Assignment to an list
s.append(value) # Appending to a list
d['key'] = value # Adding to a dictionary

• A caution : assignment operations never
make a copy of the value being assigned

• All assignments are merely reference copies
(or pointer copies if you prefer)

Copyright (C) 2014, http://www.dabeaz.com 2-

Assignment Example
• Consider this code fragment:

56

a = [1,2,3]
b = a
c = [a,b]

• A picture of the underlying memory

[1,2,3]
"a"

"b"

"c" [•, •]

ref = 4

There is only one list object
[1,2,3], but there are four
different references to it.

78

Copyright (C) 2014, http://www.dabeaz.com 2-

Assignment Example
• Modifying a value affects all references

57

>>> a.append(999)
>>> a
[1,2,3,999]
>>> b
[1,2,3,999]
>>> c
[[1,2,3,999], [1,2,3,999]]
>>>

• Notice how a change to the original list
shows up everywhere else (yikes!)

• This is because no copies were ever made--
everything is pointing at the same thing

Copyright (C) 2014, http://www.dabeaz.com 2-

Reassigning Values
• Reassigning a value never overwrites the

memory used by the previous value

a = [1,2,3]
b = a

[1,2,3]
"a" ref = 2

• Variables are names, not memory locations

a = [4,5,6] [1,2,3]

"a"

ref = 1

[4,5,6]
ref = 1

58

"b"

"b"

79

Copyright (C) 2014, http://www.dabeaz.com 2-

Some Dangers
• If you don't know about this sharing, you will

shoot yourself in the foot at some point

• Typical scenario : You modify some data thinking
that it's your own private copy and it
accidentally corrupts some data in some other
part of the program

• Comment: This is one of the reasons why the
primitive data types (int, float, string) are
immutable (read-only)

59

Copyright (C) 2014, http://www.dabeaz.com 2-

Identity and References
• Use the "is" operator to check if two

values are exactly the same in memory
>>> a = [1,2,3]
>>> b = a
>>> a is b
True
>>>

60

• It just compares the object identity (an integer)
>>> id(a)
3588944
>>> id(b)
3588944
>>>

80

Copyright (C) 2014, http://www.dabeaz.com 2-

Shallow Copies
• Lists and dicts have methods for copying

>>> a = [2,3,[100,101],4]
>>> b = list(a) # Make a copy
>>> a is b
False

• It's a new list, but the list items are shared
>>> a[2].append(102)
>>> b[2]
[100,101,102]
>>> 100 101 1022 3 4

a

b
This inner list is
still being shared

61

• Known as a "shallow copy"

Copyright (C) 2014, http://www.dabeaz.com 2-

Deep Copying

• Use the copy module
>>> a = [2,3,[100,101],4]
>>> import copy
>>> b = copy.deepcopy(a)
>>> a[2].append(102)
>>> b[2]
[100,101]
>>>

• Sometimes you need to makes a copy of an
object and all objects contained within it

62

• This is the only safe way to copy something

81

Copyright (C) 2014, http://www.dabeaz.com 2-

Names, Values, Types
• Names do not have a "type"--it's just a name

• However, values do have an underlying type
>>> a = 42
>>> b = "Hello World"
>>> type(a)
<type 'int'>
>>> type(b)
<type 'str'>

• type() will tell you what it is

• The type name is usually a function that
creates or converts a value to that type

63

Copyright (C) 2014, http://www.dabeaz.com 2-

Type Checking

• How to tell if an object is a specific type
if isinstance(a,list):
 print "a is a list"

• Checking for one of many types

if isinstance(a,(list,tuple)):
 print "a is a list or tuple"

64

• Caution: Don't go overboard with type
checking (can lead to excessive complexity)

82

Copyright (C) 2014, http://www.dabeaz.com 2-

Everything is an object

• Numbers, strings, lists, functions,
exceptions, classes, instances, etc...

• All objects are said to be "first-class"

• Meaning: All objects that can be named can
be passed around as data, placed in
containers, etc., without any restrictions.

• There are no "special" kinds of objects

65

Copyright (C) 2014, http://www.dabeaz.com 2-

First Class Objects
• A simple example:

>>> import math
>>> items = [abs, math, ValueError]
>>> items
[<built-in function abs>,
 <module 'math' (builtin)>,
 <type 'exceptions.ValueError'>]
>>> items[0](-45)
45
>>> items[1].sqrt(2)
1.4142135623730951
>>> try:
 x = int("not a number")
 except items[2]:
 print "Failed!"

Failed!
>>>

66

A list containing a
function, a module,
and an exception.

You can use items in
the list in place of the

original names

83

Copyright (C) 2014, http://www.dabeaz.com 2-

Summary

• Have looked at basic principles of working
with data in Python programs

• Brief look at part of the object-model

• A big part of understanding most Python
programs.

67

Copyright (C) 2014, http://www.dabeaz.com 2-

Exercise 2.6

Time : 15 Minutes

68

84

Program Organization
and Functions

Section 3

Copyright (C) 2014, http://www.dabeaz.com 3-

Overview

• How to organize larger programs

• More details on program execution

• Defining and working with functions

• Exceptions and Error Handling

2

85

Copyright (C) 2014, http://www.dabeaz.com 3-

Observation

• A large number of Python programmers spend
most of their time writing short "scripts"

• One-off problems, prototyping, testing, etc.

• Python is good at this!

• And it what draws many users to Python

3

Copyright (C) 2014, http://www.dabeaz.com 3-

What is a "Script?"

• A "script" is a program that simply runs a
series of statements and stops

program.py

statement1
statement2
statement3
...

4

• We've been writing scripts to this point

86

Copyright (C) 2014, http://www.dabeaz.com 3-

Problem

• If you write a useful script, it will grow features

• You may apply it to other related problems

• Over time, it might become a critical application

• And it might turn into a huge tangled mess

• So, let's get organized...

5

Copyright (C) 2014, http://www.dabeaz.com 3-

Defining Things
• You must always define things before they

get used later on in a program.
def square(x):
 return x*x

a = 42
b = a + 2 # Requires that a is already defined

z = square(b) # Requires square to be defined

6

• The order is important

• You almost always put the definitions of
variables and functions near the beginning

87

Copyright (C) 2014, http://www.dabeaz.com 3-

Defining Functions
• It is a good idea to put all of the code related

to a single "task" all in one place
def read_prices(filename):
 prices = {}
 f = open(filename)
 f_csv = csv.reader(f)
 for row in f_csv:
 prices[row[0]] = float(row[1])
 f.close()
 return prices

7

• A function also simplifies repeated operations
oldprices = read_prices('oldprices.csv')
newprices = read_prices('newprices.csv')

Copyright (C) 2014, http://www.dabeaz.com 3-

What is a function?
• A function is a sequence of statements

def funcname(args):
 statement
 statement
 ...
 return result

8

• Any Python statement can be used inside
def foo():
 import math
 print math.sqrt(2)
 help(math)

• There are no "special" statements in Python

88

Copyright (C) 2014, http://www.dabeaz.com 3-

Function Definitions
• Functions can be defined in any order

def foo(x):
 bar(x)

def bar(x):
 statements

9

• Functions must only be defined before they
are actually used during program execution
foo(3) # foo must be defined already

def bar(x)
 statements

def foo(x):
 bar(x)

• Stylistically, it is more common to see
functions defined in a "bottom-up" fashion

Copyright (C) 2014, http://www.dabeaz.com 3-

Bottom-up Style
• Functions are treated as building blocks

• The smaller/simpler blocks go first
myprogram.py
def foo(x):
 ...
def bar(x):
 ...
 foo(x)
 ...
def spam(x):
 ...
 bar(x)
 ...

spam(42) # Call spam() to do something

10

Later functions build upon
earlier functions

Code that uses the functions
appears at the end

89

Copyright (C) 2014, http://www.dabeaz.com 3-

Function Arguments

• Functions operate on passed arguments
def square(x):
 return x*x

11

• Argument variables receive their values
when the function is called
a = square(3)

argument

• The argument names are only visible inside
the function body (are local to function)

Copyright (C) 2014, http://www.dabeaz.com 3-

Function Design
• Try to make functions that only operate on their

inputs and which return a proper result

12

def read_prices(filename):
 prices = {}
 f = open(filename)
 ...
 return prices

prices = read_prices('prices.csv')

filename = 'prices.csv'
prices = {}

def read_prices()
 f = open(filename)
 ...
 return

Yes No

• Depending on external variables makes
everything worse. Don't do that.

90

Copyright (C) 2014, http://www.dabeaz.com 3-

Exercise 3.1

13

Time : 15 minutes

Copyright (C) 2014, http://www.dabeaz.com 3-

Default Arguments
• Sometimes you want an optional argument

def read_prices(filename, debug=False):
 ...

d = read_prices('prices.csv')
e = read_prices('prices.dat', True)

• If a default value is assigned, the argument is
optional in function calls

14

• Note : Arguments with defaults must appear
at the end of the argument list (all non-
optional arguments go first)

91

Copyright (C) 2014, http://www.dabeaz.com 3-

Calling a Function
• Consider a simple function

prices = read_prices('prices.csv', True)

• Calling with "positional" args

15

def read_prices(filename, debug):
 ...

prices = read_prices(filename='prices.csv',
 debug=True)

• Calling with "keyword" arguments

Copyright (C) 2014, http://www.dabeaz.com 3-

Keyword Arguments

def parse_data(data, debug=False, ignore_errors=False):
 ...

• Keyword arguments are useful for functions
that have optional features/flags

16

parse_data(data, False, True) # ?????

parse_data(data, ignore_errors=True)
parse_data(data, debug=True)
parse_data(data, debug=True, ignore_errors=True)

• Compare and contrast

• Keyword arguments improve code clarity

92

Copyright (C) 2014, http://www.dabeaz.com 3-

Design Tip
• Always give short, but meaningful names to

function arguments

• Someone using a function may want to use
the keyword calling style

17

d = read_prices('prices.csv', debug=True)

• Python development tools will show the
names in help features and documentation

Copyright (C) 2014, http://www.dabeaz.com 3-

Return Values

• return statement returns a value
def square(x):
 return x*x

18

• If no return value, None is returned
def bar(x):
 statements
 return

a = bar(4) # a = None

93

Copyright (C) 2014, http://www.dabeaz.com 3-

Multiple Return Values

• A function may return multiple values by
returning a tuple
def divide(a,b):
 q = a // b # Quotient
 r = a % b # Remainder
 return q, r # Return a tuple

19

• Usage example:

x, y = divide(37, 5) # x = 7, y = 2

x = divide(37, 5) # x = (7, 2)

Copyright (C) 2014, http://www.dabeaz.com 3-

Understanding Variables
• Programs assign values to variables

• Variable assignments occur outside and
inside function definitions

• Variables defined outside are "global"

• Variables inside a function are "local"

20

x = value # Global variable

def foo():
 y = value # Local variable

94

Copyright (C) 2014, http://www.dabeaz.com 3-

Local Variables
• Variables inside functions are private

• Values not retained or accessible after return
>>> stocks = read_portfolio("stocks.dat")
>>> fields
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
NameError: name 'fields' is not defined
>>>

21

def read_portfolio(filename):
 portfolio = []
 for line in open(filename):
 fields = line.split()
 s = (fields[0],int(fields[1]),float(fields[2]))
 portfolio.append(s)
 return portfolio

• Don't conflict with variables found elsewhere

Copyright (C) 2014, http://www.dabeaz.com 3-

Global Variables

• Functions can access the values of globals

• This includes functions

22

name = 'Dave'

def greeting():
 print 'Hello', name

def foo():
 ...

def bar():
 foo()

95

Copyright (C) 2014, http://www.dabeaz.com 3-

Modifying Globals
• One quirk: Functions can't modify globals

23

x = 0

def foo():
 x = 42

• Example:
>>> x
0
>>> foo()
>>> x
0
>>>

Notice no change

• All assignments in functions are local

Copyright (C) 2014, http://www.dabeaz.com 3-

Modifying Globals
• If you must modify a global variable you

must declare it as such
x = 0

def foo():
 global x
 x = 42 # Changes the global x above

• global declaration must appear before use

• Considered "bad style"

• Avoid entirely if you can (use a class instead)

24

96

Copyright (C) 2014, http://www.dabeaz.com 3-

Argument Passing
• When you call a function, the argument

variables are names for passed values

• If mutable data types are passed (e.g., lists,
dicts), they can be modified "in-place"

25

def foo(items):
 items.append(42)

a = [1, 2, 3]
foo(a)
print a # [1, 2, 3, 42]

Modifies the
input object

• Key point: Function doesn't receive a copy

Copyright (C) 2014, http://www.dabeaz.com 3-

Understanding Assignment
• Make sure you understand the subtle

difference between modifying a value and
reassigning a variable name

• Example:

26

def foo(items):
 items.append(42) # Modifies items list

def bar(items):
 items = [4,5,6] # Binds name 'items' to new list

• Reminder : Variable assignment never
overwrites memory (the name is simply
bound to a new value)

97

Copyright (C) 2014, http://www.dabeaz.com 3-

Exercise 3.2

27

Time : 30 minutes

Copyright (C) 2014, http://www.dabeaz.com 3-

Error Checking
• Python performs no checking or validation of

function argument types or values

• A function will work on any data that is
compatible with the statements in the function

def add(x, y):
 return x + y

add(3, 4) # 7
add('Hello', 'World') # 'HelloWorld'
add('3', '4') # '34'

• Example:

28

98

Copyright (C) 2014, http://www.dabeaz.com 3-

Error Checking
• If there are errors in a function, they will

show up at run time (as an exception)

def add(x, y):
 return x + y

>>> add(3, '4')
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for +:
'int' and 'str'
>>>

• Example:

29

• To verify code, there is a strong emphasis on
testing (covered later)

Copyright (C) 2014, http://www.dabeaz.com 3-

Exceptions

• Used to signal errors

• Catching an exception (try)

• Raising an exception (raise)

if name not in names:
 raise RuntimeError('Name not found')

try:
 authenticate(username)
except RuntimeError as e:
 print e

30

99

Copyright (C) 2014, http://www.dabeaz.com 3-

Exceptions
• Exceptions propagate to first matching except
def foo():
 try:
 bar()
 except RuntimeError as e:
 ...

def bar():
 try:
 spam()
 except RuntimeError as e:
 ...
def spam():
 grok()

def grok():
 ...
 raise RuntimeError('Whoa!')

31

Copyright (C) 2014, http://www.dabeaz.com 3-

Exceptions
• To handle the exception, statements inside the

except block run

def bar():
 try:
 grok()
 except RuntimeError as e:
 statements
 statements
 ...

def grok():
 ...
 raise RuntimeError('Whoa!')

32

100

Copyright (C) 2014, http://www.dabeaz.com 3-

Exceptions
• After handling, execution resumes with the first

statement after the try-except
def bar():
 try:
 grok()
 except RuntimeError as e:
 statements
 statements
 ...
 statements
 statements
 ...

def grok():
 ...
 raise RuntimeError("Whoa!")

33

Copyright (C) 2014, http://www.dabeaz.com 3-

Builtin-Exceptions
• About two-dozen built-in exceptions

ArithmeticError
AssertionError
EnvironmentError
EOFError
ImportError
IndexError
KeyboardInterrupt
KeyError
MemoryError
NameError
ReferenceError
RuntimeError
SyntaxError
SystemError
TypeError
ValueError

34

• Consult reference

101

Copyright (C) 2014, http://www.dabeaz.com 3-

Exception Values
• Most exceptions have an associated value

• More information about what's wrong
raise RuntimeError('Invalid user name')

• Passed to variable supplied in except
try:
 ...
except RuntimeError as e:
 ...

• It's an instance of the exception type, but
often looks like a string
except RuntimeError as e:
 print 'Failed : Reason', e

35

Copyright (C) 2014, http://www.dabeaz.com 3-

Catching Multiple Errors
• Can catch different kinds of exceptions

try:
 ...
except LookupError as e:
 ...
except RuntimeError as e:
 ...
except IOError as e:
 ...
except KeyboardInterrupt as e:
 ...

• Alternatively, if handling is same
try:
 ...
except (IOError,LookupError,RuntimeError) as e:
 ...

36

102

Copyright (C) 2014, http://www.dabeaz.com 3-

Catching All Errors

• Catching any exception
try:
 ...
except Exception:
 print 'An error occurred'

• A really bad idea as shown (don't do it!)

37

Copyright (C) 2014, http://www.dabeaz.com 3-

Exploding Heads

• The wrong way to use exceptions:
try:
 go_do_something()
except Exception:
 print 'Computer says no'

• This swallows all possible errors

• May make it impossible to debug if code is
failing for some reason you didn't expect at
all (e.g., uninstalled Python module, etc.)

38

103

Copyright (C) 2014, http://www.dabeaz.com 3-

A Better Approach
• This is a somewhat more sane approach

try:
 go_do_something()
except Exception as e:
 print 'Computer says no. Reason : %s\n' % e

39

• Reports a specific reason for the failure

• It is almost always a good idea to have some
mechanism for viewing/reporting errors if
you are writing code that catches all possible
exceptions

Copyright (C) 2014, http://www.dabeaz.com 3-

Reraising an Exception

• Use 'raise' to propagate a caught error
try:
 go_do_something()
except Exception as e:
 print 'Computer says no. Reason : %s\n' % e
 raise

40

• Allows you to take action (e.g., logging), but
pass the error on to the caller

104

Copyright (C) 2014, http://www.dabeaz.com 3-

Exception Advice

• Don't catch exceptions - fail fast and loud

41

(if it's important, someone else will
take care of the problem)

• Only catch an exception if you're that someone

• That is, only catch errors where you can recover
and sanely keep going

Copyright (C) 2014, http://www.dabeaz.com 3-

finally statement

• Specifies code that must run regardless of
whether or not an exception occurs

lock = Lock()
...
lock.acquire()
try:
 ...
finally:
 lock.release() # release the lock

• Commonly use to properly manage
resources (especially locks, files, etc.)

42

105

Copyright (C) 2014, http://www.dabeaz.com 3-

with statement
• In modern code, try-finally often replaced

with the 'with' statement
lock = Lock()
with lock:
 # lock acquired
 ...
lock released

with open(filename) as f:
 # Use the file
 ...
File closed

43

• Defines a usage "context" for a resource

• Only works with certain objects

Copyright (C) 2014, http://www.dabeaz.com 3-

Program Exit
• Program exit is handle through exceptions

raise SystemExit
raise SystemExit(exitcode)
raise SystemExit('Informative message')

• An alternative sometimes seen
import sys
sys.exit()
sys.exit(exitcode)

44

• Hard exit (immediate, no cleanup)
import os
os._exit(exitcode)

106

Copyright (C) 2014, http://www.dabeaz.com 3-

Exercise 3.3

45

Time : 15 minutes

107

Modules and Libraries
Section 4

Copyright (C) 2014, http://www.dabeaz.com 4-

Overview

• How to place code in a module

• Essential standard library modules

• Installing third party libraries

2

108

Copyright (C) 2014, http://www.dabeaz.com 4-

Modules

• Any Python source file is a module

• import statement loads and executes a module

foo.py
def grok(a):
 ...
def spam(b):
 ...

import foo

a = foo.grok(2)
b = foo.spam("Hello")
...

3

Copyright (C) 2014, http://www.dabeaz.com 4-

Namespaces

• A module is a collection of named values (i.e.,
it's said to be a "namespace")

• The names are simply all of the global variables
and functions defined in the source file

• After import, module name used as a prefix
>>> import foo
>>> foo.grok(2)
>>>

4

• Module name is tied to source (foo -> foo.py)

109

Copyright (C) 2014, http://www.dabeaz.com 4-

Global Definitions
• Everything defined in the "global" scope is

what populates the module namespace

foo.py
x = 42
def grok(a):
 ...

5

• Different modules can use the same names
and those names don't conflict with each
other (modules are isolated)

bar.py
x = 37
def spam(a):
 ...

These definitions of x
are different

Copyright (C) 2014, http://www.dabeaz.com 4-

Modules as Environments
• Modules form an enclosing environment for

all of the code defined inside

6

foo.py
x = 42

def grok(a):
 print(x)

global variables are always
bound to the enclosing

module (same file)

• Each source file is its own little universe

• This is great!

• What happens in a module stays in a module

110

Copyright (C) 2014, http://www.dabeaz.com 4-

Module Execution

• When a module is imported, all of the
statements in the module execute one after
another until the end of the file is reached

• The contents of the module namespace are all
of the global names that are still defined at the
end of the execution process

• If there are scripting statements that carry out
tasks in the global scope (printing, creating
files, etc.), you will see them run on import

7

Copyright (C) 2014, http://www.dabeaz.com 4-

import as statement

• Same as a normal import

• Just a simple renaming in that one file (the
one that did the import)

• Changing the name of a module
import math as m

def rectangular(r, theta):
 x = r * m.cos(theta)
 y = r * m.sin(theta)
 return x, y

8

111

Copyright (C) 2014, http://www.dabeaz.com 4-

from module import
• Lifts selected symbols out of a module and

makes them available locally

from math import sin, cos

def rectangular(r, theta):
 x = r * cos(theta)
 y = r * sin(theta)
 return x, y

9

• Allows parts of a module to be used without
having to type the module prefix

• If library functions are used frequently, this
makes them run faster (one less lookup)

Copyright (C) 2014, http://www.dabeaz.com 4-

from module import *
• Takes all symbols from a module and places

them into local scope

from math import *

def rectangular(r, theta):
 x = r * cos(theta)
 y = r * sin(theta)
 return x, y

10

• Useful if you are going to use a lot of
functions from a module and it's annoying to
specify the module prefix all of the time

112

Copyright (C) 2014, http://www.dabeaz.com 4-

from module import *
• You should almost never use it in practice

because it leads to poor code readability

• Example:

11

from math import *
from random import *

...
r = gauss(0.0, 1.0) # In what module?

• Makes it very difficult to understand someone
else's code if you need to locate the original
definition of a library function

Copyright (C) 2014, http://www.dabeaz.com 4-

Be Explicit
• In the long run, it's better to be explicit and

only import what you actually need

12

from math import sin, cos, sqrt
from random import gauss, uniform

...
r = gauss(0.0, 1.0) # Defined in random (see above)

• Of course it depends on the situation

• For interactive sessions and throw-away
scripts, "from module import *" is often
preferred (reduces typing and thinking)

113

Copyright (C) 2014, http://www.dabeaz.com 4-

Commentary

• Variations on import do not change the way
that modules work

13

import math as m
from math import cos, sin
from math import *
...

• import always executes the entire file

• Modules are still isolated environments

• These variations are just manipulating names

Copyright (C) 2014, http://www.dabeaz.com 4-

Main Functions
• In many programming languages, there is a

concept of a "main" function or method

14

/* C/C++ */
int main(int argc, char *argv[]) {
 ...
}

/* Java */
class myprog {
 public static void main(String args[]) {
 ...
 }
}

• It's the first function that executes when an
application is launched

114

Copyright (C) 2014, http://www.dabeaz.com 4-

Main Module

• Python has no "main" function or method

• Instead, there is a "main" module

• It's simply the source file that runs first

15

bash % python foo.py
...

• Whatever module you give to the interpreter
at startup becomes "main"

Copyright (C) 2014, http://www.dabeaz.com 4-

__main__ check

• It is standard practice for modules that can
run as a main program to use this convention:

16

foo.py
...
if __name__ == '__main__':
 # Running as the main program
 ...
 statements
 ...

• Statements enclosed inside the if-statement
become the "main" program

115

Copyright (C) 2014, http://www.dabeaz.com 4-

__main__ check
• Important: Any file can either run as main or

as a library import

17

bash % python foo.py # Running as main

>>> import foo # Loaded as a module

• __name__ is the name of the module

• As a general rule, you don't want statements
that are part of a main program to execute
on a library import (hence, the check)
if __name__ == '__main__':
 # Does not execute if loaded with import
 ...

Copyright (C) 2014, http://www.dabeaz.com 4-

Module Loading

• Each module loads and executes once

• Repeated imports just return a reference to
the previously loaded module

• sys.modules is a dict of all loaded modules

18

>>> import sys
>>> sys.modules.keys()
['copy_reg', '__main__', 'site', '__builtin__',
'encodings', 'encodings.encodings', 'posixpath', ...]
>>>

116

Copyright (C) 2014, http://www.dabeaz.com 4-

Locating Modules
• When looking for modules, Python first

looks in the same directory as the source
file that's executing the import

• If a module can't be found there, an internal
module search path is consulted
>>> import sys
>>> sys.path
[
 '',
 '/usr/local/lib/python27/python27.zip',
 '/usr/local/lib/python27',
 ...
]

19

Copyright (C) 2014, http://www.dabeaz.com 4-

Module Search Path

• sys.path contains search path

• Paths also added via environment variables

• Can manually adjust if you need to
import sys
sys.path.append("/project/foo/pyfiles")

% env PYTHONPATH=/project/foo/pyfiles python
Python 2.6.4 (r264:75821M, Oct 27 2009, 19:48:32)
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin
>>> import sys
>>> sys.path
['','/project/foo/pyfiles', ...]

20

117

Copyright (C) 2014, http://www.dabeaz.com 4-

Exercise 4.1

21

Time : 15 Minutes

Copyright (C) 2014, http://www.dabeaz.com 4-

Standard Library

• Python includes a large standard library

• Several hundred modules

• System, networking, data formats, etc.

• All accessible via import

• Let's take a tour of the most essential ones

22

118

Copyright (C) 2014, http://www.dabeaz.com 4-

sys module

• Information related to environment

• Version information

• System limits

• Command line options

• Module search paths

• Standard I/O streams

23

Copyright (C) 2014, http://www.dabeaz.com 4-

sys: Standard I/O
• Standard I/O streams

sys.stdout
sys.stderr
sys.stdin

• By default, print is directed to sys.stdout

• Input read from sys.stdin

• Can redefine or use directly
sys.stdout = open("out.txt","w")
print >>sys.stderr, "Warning. Unable to connect"

24

119

Copyright (C) 2014, http://www.dabeaz.com 4-

sys: Standard I/O
• Function that allows I/O redirection

import sys
def greet(name, outfile=None):
 if outfile is None:
 outfile = sys.stdout
 outfile.write('Hello %s\n' % name)

• Example:
Write to standard out
greet('Dave')

Write to a file
f = open('somefile.txt', 'w')
greet('Dave', outfile=f)
f.close()

25

Copyright (C) 2014, http://www.dabeaz.com 4-

sys: Command Line Opts
• Many programs execute from the shell

sys.argv ['report.py, 'portfolio.csv', 'prices.csv']

• Arguments get placed in sys.argv

26

bash % python report.py portfolio.csv prices.csv

import sys
if len(sys.argv) != 3:
 raise SystemExit('Usage: %s portfile pricefile' %
 sys.argv[0])
portfile = sys.argv[1]
pricefile = sys.argv[2]
...

• Example of processing

120

Copyright (C) 2014, http://www.dabeaz.com 4-

Advanced Arguments
• Use argparse for advanced argument parsing

27

import argparse

parser = argparse.ArgumentParser()
parser.add_argument('-o', '--output')
parser.add_argument('-d', '--debug', action='store_true')
parser.add_argument('portfile')
parser.add_argument('pricefile')

Parse the options
args = parser.parse_args()

Retrieve the option values
portfile = args.portfile
pricefile = args.pricefile
outfile = args.output
debug = args.debug

Copyright (C) 2014, http://www.dabeaz.com 4-

os Module

• Contains operating system functions

• Example: Executing a shell command
>>> import os
>>> os.system("mkdir temp")
>>>

28

• Hundreds of other low-level operations

• Example: Executing a system call
>>> os.mkdir("temp")
>>>

121

Copyright (C) 2014, http://www.dabeaz.com 4-

Environment Variables

• os.environ dictionary contains values
import os
home = os.environ['HOME']
os.environ['HOME'] = '/home/user/guest'

• Changes are reflected in Python and any
subprocesses created later

• Environment variables (typically set in shell)
% setenv NAME dave
% setenv RSH ssh
% python prog.py

29

Copyright (C) 2014, http://www.dabeaz.com 4-

Getting a Directory Listing

• os.listdir() function

30

>>> files = os.listdir("/some/path")
>>> files
['foo','bar','spam']
>>>

• glob module
>>> txtfiles = glob.glob("*.txt")
>>> datfiles = glob.glob("Dat[0-5]*")
>>>

• glob understands Unix shell wildcards (on all
systems)

122

Copyright (C) 2014, http://www.dabeaz.com 4-

os.path Module

• Portable management of path names and files

• Examples:
>>> import os.path
>>> os.path.basename("/home/foo/bar.txt")
'bar.txt'
>>> os.path.dirname("/home/foo/bar.txt")
'/home/foo'
>>> os.path.join("home","foo","bar.txt")
'home/foo/bar.txt'
>>>

31

• Solves problem of '/' vs. '\' on Unix/Windows

Copyright (C) 2014, http://www.dabeaz.com 4-

File Tests

• Testing if a filename is a regular file

32

>>> os.path.isfile("foo.txt")
True
>>> os.path.isfile("/usr")
False
>>>

• Testing if a filename is a directory
>>> os.path.isdir("foo.txt")
False
>>> os.path.isdir("/usr")
True
>>>

• Testing if a file exists
>>> os.path.exists("foo.txt")
True
>>>

123

Copyright (C) 2014, http://www.dabeaz.com 4-

Pathnames

• Relative paths (to current working directory)

33

>>> os.path.relpath("/etc/passwd")
'../../../../../../etc/passwd'
>>>

• Expanding user names

• Expand into a full absolute path name
>>> os.path.abspath("README.html")
'/Users/beazley/Desktop/IntroPython2010/Exercises/
PythonClass/README.html'
>>>

>>> os.path.expanduser("~/Desktop")
'/Users/beazley/Desktop'
>>>

Copyright (C) 2014, http://www.dabeaz.com 4-

File Metadata

• Getting the last modification/access time

34

>>> os.path.getmtime("foo.txt")
1175769416.0
>>> os.path.getatime("foo.txt")
1175769491.0
>>>

• Note: To decode times, use time module
>>> time.ctime(os.path.getmtime("foo.txt"))
'Thu Apr 5 05:36:56 2007'
>>>

• Getting the file size
>>> os.path.getsize("foo.txt")
1344L
>>>

124

Copyright (C) 2014, http://www.dabeaz.com 4-

Directory Walking

35

• Walking over a directory tree
for path, dirs, files in os.walk(topdir):
 # path = name of current directory
 # dirs = list of all subdirectories in path
 # files = list of all files in path

 # Example: Print out names of .py files
 for filename in files:
 if filename.endswith(".py"):
 print os.path.join(path,filename)

• walk() is a little tricky to use at first, but it
can be used to carry out operations similar
to those performed with Unix 'find'

Copyright (C) 2014, http://www.dabeaz.com 4-

Shell Operations (shutil)

• Copying a file

36

>>> shutil.copy("source","dest")

• Moving a file (renaming)

>>> shutil.move("old","new")

• Copying a directory tree
>>> shutil.copytree("srcdir","destdir")

• Removing a directory tree
>>> shutil.rmtree("dir")

125

Copyright (C) 2014, http://www.dabeaz.com 4-

time module
• System date and time related functions

37

time.sleep(seconds)
time.clock() # CPU time (seconds)
time.time() # Real time (seconds)
time.localtime([secs]) # Time as a struct
time.ctime([tmstruct]) # Time as a string

>>> time.time()
1267128590.589685
>>> time.localtime()
time.struct_time(tm_year=2010, tm_mon=2,
tm_mday=25, tm_hour=14, tm_min=9, tm_sec=54,
tm_wday=3, tm_yday=56, tm_isdst=0)
>>> time.ctime()
'Thu Feb 25 14:09:58 2010'
>>>

• Example

Copyright (C) 2014, http://www.dabeaz.com 4-

datetime module
• A module for more generic representation

and manipulation of dates and times

38

>>> from datetime import datetime
>>> cataclysm = datetime(2012,12,21)
>>> cataclysm
datetime.datetime(2012, 12, 21, 0, 0)
>>> today = datetime.today()
>>> d = cataclysm - today
>>> d
datetime.timedelta(1249, 32536, 964510)
>>> d.days
1249
>>>

• There are many more features not shown

126

Copyright (C) 2014, http://www.dabeaz.com 4-

subprocess Module

• A module for launching subprocesses

39

import subprocess
out = subprocess.check_output(['ls','-l'])

• Capture output of a command as string

• Low-level subprocess with stdin/stdout pipes
p = subprocess.Popen(['wc'],
 stdout=subprocess.PIPE,
 stdin=subprocess.PIPE)
p.stdin.write("Hello World\n")
p.stdin.close()
data = p.stdout.read()

Copyright (C) 2014, http://www.dabeaz.com 4-

Exercise 4.2

40

Time : 15 Minutes

127

Copyright (C) 2014, http://www.dabeaz.com 4-

Data Handling

• There are modules for handling various text
and binary data processing problems

• re (regular expressions)

• xml.etree.ElementTree (XML)

• json (JSON)

• struct (binary data)

41

Copyright (C) 2014, http://www.dabeaz.com 4-

Regular Expressions

• Operations involving text patterns

• Extracting text from a document

• Replacing text

• Example: Extracting URLs from text

42

Go to http://www.python.org for more information
on Python

128

Copyright (C) 2014, http://www.dabeaz.com 4-

Regex Pattern Syntax
• Regular expression pattern syntax overview

foo # Matches the text "foo"
(foo|bar) # Matches the text "foo" or "bar"
(foo)* # Match 0 or more repetitions of foo
(foo)+ # Match 1 or more repetitions of foo
(foo)? # Match 0 or 1 repetitions of foo
(foo){N} # Match N repetitions of foo
[abcde] # Match one of the letters a,b,c,d,e
[a-z] # Match one letter from a,b,...,z
[^a-z] # Match any character except a,b,...z
. # Match any character except newline
$ # Match end of line
* # Match the * character
\+ # Match the + character
\d # Match a digit
\s # Match whitespace
\w # Match alphanumeric character

43
• Many other advanced options (not shown)

Copyright (C) 2014, http://www.dabeaz.com 4-

Regex Pattern Examples

• Here are some very simple pattern examples

• A date of the form YYYY/MM/DD
(\d+)/(\d+)/(\d+) (Simple
(\d{4})/(\d{2})/(\d{2}) (A bit more precise)

44

• A decimal number (e.g., 12.345, 12.3, 12.)
\d+\.\d*

• A sequence of hexadecimal digits
[0-9A-F]+

129

Copyright (C) 2014, http://www.dabeaz.com 4-

Writing Regex Patterns

• Patterns are written out as strings

• Usually using raw strings because the '\'
character has meaning in regex patterns

pat = r'(\d+)/(\d+)/(\d+)'

• Example

• Recall raw strings don't interpret escapes (\)

45

Copyright (C) 2014, http://www.dabeaz.com 4-

re Module
• Support for common text pattern operations

46

>>> import re
>>> text = 'Today is 1/17/2014. Tomorrow is 1/18/2014'

>>> # Find all matches of a pattern
>>> re.findall(r'(\d+)/(\d+)/(\d+)', text)
[('1', '17', '2014'), ('1', '18', '2014')]

>>> # Replace a pattern with new text
>>> re.sub(r'(\d+)/(\d+)/(\d+)', r'\3-\1-\2', text)
'Today is 2014-1-17. Tomorrow is 2014-1-18'

>>> # Splitting on a pattern
>>> re.split(r'[,:]', '1,2:3,4')
['1', '2', '3', '4']
>>>

• Several other operations, but this is basic idea

130

Copyright (C) 2014, http://www.dabeaz.com 4-

re: Groups

• Parenthesized parts of a pattern define groups
pat = r'(\d+)/(\d+)/(\d+)'

• Groups are assigned numbers

1 2

• Numbering is determined by looking at '('
from left to right

47

pat = r'(\d+)/(\d+)/(\d+)'

3

Copyright (C) 2014, http://www.dabeaz.com 4-

re: Groups
• When searching, groups get separated

>>> re.findall(r'(\d+)/(\d+)/(\d+)', text)
[('1', '17', '2014'), ('1', '18', '2014')]
>>>

48

• Use \N to refer to groups in replacements

group 1 group 2 group 3

>>> re.sub(r'(\d+)/(\d+)/(\d+)', r'\3-\1-\2', text)
'Today is 2014-1-17. Tomorrow is 2014-1-18'
>>>

131

Copyright (C) 2014, http://www.dabeaz.com 4-

Match Objects

• Certain operations return a 'Match' object
>>> m = re.match('r(\d+)/(\d+)/(\d+)', '2014/1/17')
>>> m
<_sre.SRE_Match object at 0x1002cab78>
>>>

• You can extract matched text from it
>>> m.groups()
('2014', '1', '17')
>>> m.group(0)
'2014/1/17'
>>> m.group(1)
'2014'
>>>

49

Copyright (C) 2014, http://www.dabeaz.com 4-

re: Comments
• re module is very powerful

• I have only covered the essential basics

• Strongly influenced by Perl

• However, regexs are not an operator

• Reference:

Jeffrey Friedl, "Mastering Regular
Expressions", O'Reilly & Associates,
2006.

50

132

Copyright (C) 2014, http://www.dabeaz.com 4-

Exercise 4.3

51

(Optional)

Time : 10 Minutes

Copyright (C) 2014, http://www.dabeaz.com 4-

XML Parsing
• XML documents use structured markup

<contact>
 <name>Elwood Blues</name>
 <address>1060 W Addison</address>
 <city>Chicago</city>
 <zip>60616</zip>
</contact>

• Documents made up of elements
<name>Elwood Blues</name>

• Elements have starting/ending tags

• May contain text and other elements

52

133

Copyright (C) 2014, http://www.dabeaz.com 4-

XML Example
<?xml version="1.0" encoding="iso-8859-1"?>
<recipe>
 <title>Famous Guacamole</title>
 <description>
 A southwest favorite!
 </description>
 <ingredients>
 <item num="2">Large avocados, chopped</item>
 <item num="1">Tomato, chopped</item>
 <item num="1/2" units="C">White onion, chopped</item>
 <item num="1" units="tbl">Fresh squeezed lemon juice</item>
 <item num="1">Jalapeno pepper, diced</item>
 <item num="1" units="tbl">Fresh cilantro, minced</item>
 <item num="3" units="tsp">Sea Salt</item>
 <item num="6" units="bottles">Ice-cold beer</item>
 </ingredients>
 <directions>
 Combine all ingredients and hand whisk to desired consistency.
 Serve and enjoy with ice-cold beers.
 </directions>
</recipe>

53

Copyright (C) 2014, http://www.dabeaz.com 4-

XML Parsing

• XML is a widely used data format

• To parse it, use xml.etree.ElementTree

• This is not the only approach, but it is often
considered to be the easiest--especially for
simple XML problems

54

134

Copyright (C) 2014, http://www.dabeaz.com 4-

ElementTree Parsing
• Parsing a document

from xml.etree.ElementTree import parse
doc = parse('recipe.xml')

• Finding one or more elements
elem = doc.find('title')
for elem in doc.findall('ingredients/item'):
 statements

55

• Element attributes and properties
elem.tag # Element name
elem.text # Element text
elem.get(aname [,default]) # Element attributes

Copyright (C) 2014, http://www.dabeaz.com 4-

Obtaining Elements
<?xml version="1.0" encoding="iso-8859-1"?>
<recipe>
 <title>Famous Guacamole</title>
 <description>
 A southwest favorite!
 </description>
 <ingredients>
 <item num="2">Large avocados, chopped</item>
 <item num="1">Tomato, chopped</item>
 <item num="1/2" units="C">White onion, chopped</item>
 <item num="1" units="tbl">Fresh squeezed lemon juice</item>
 <item num="1">Jalapeno pepper, diced</item>
 <item num="1" units="tbl">Fresh cilantro, minced</item>
 <item num="3" units="tsp">Sea Salt</item>
 <item num="6" units="bottles">Ice-cold beer</item>
 </ingredients>
 <directions>
 Combine all ingredients and hand whisk to desired consistency.
 Serve and enjoy with ice-cold beers.
 </directions>
</recipe>

56

doc = parse('recipe.xml')
desc_elem = doc.find('description')
desc_text = desc_elem.text

doc = parse('recipe.xml')
desc_text = doc.findtext('description')

or

135

Copyright (C) 2014, http://www.dabeaz.com 4-

Iterating over Elements
<?xml version="1.0" encoding="iso-8859-1"?>
<recipe>
 <title>Famous Guacamole</title>
 <description>
 A southwest favorite!
 </description>
 <ingredients>
 <item num="2">Large avocados, chopped</item>
 <item num="1">Tomato, chopped</item>
 <item num="1/2" units="C">White onion, chopped</item>
 <item num="1" units="tbl">Fresh squeezed lemon juice</item>
 <item num="1">Jalapeno pepper, diced</item>
 <item num="1" units="tbl">Fresh cilantro, minced</item>
 <item num="3" units="tsp">Sea Salt</item>
 <item num="6" units="bottles">Ice-cold beer</item>
 </ingredients>
 <directions>
 Combine all ingredients and hand whisk to desired consistency.
 Serve and enjoy with ice-cold beers.
 </directions>
</recipe>

57

doc = parse('recipe.xml')
for item in doc.findall('ingredients/item'):
 statements

Copyright (C) 2014, http://www.dabeaz.com 4-

Element Attributes
<?xml version="1.0" encoding="iso-8859-1"?>
<recipe>
 <title>Famous Guacamole</title>
 <description>
 A southwest favorite!
 </description>
 <ingredients>
 <item num="2">Large avocados, chopped</item>
 <item num="1">Tomato, chopped</item>
 <item num="1/2" units="C">White onion, chopped</item>
 <item num="1" units="tbl">Fresh squeezed lemon juice</item>
 <item num="1">Jalapeno pepper, diced</item>
 <item num="1" units="tbl">Fresh cilantro, minced</item>
 <item num="3" units="tsp">Sea Salt</item>
 <item num="6" units="bottles">Ice-cold beer</item>
 </ingredients>
 <directions>
 Combine all ingredients and hand whisk to desired consistency.
 Serve and enjoy with ice-cold beers.
 </directions>
</recipe>

58

for item in doc.findall('ingredients/item'):
 num = item.get('num')
 units = item.get('units')

136

Copyright (C) 2014, http://www.dabeaz.com 4-

JSON Encoding/Decoding
• JSON - JavaScript Object Notation

59

{
 "recipe" : {
 "title" : "Famous Guacomole",
 "description" : "A southwest favorite!",
 "ingredients" : [
 {"num": "2", "item":"Large avocados, chopped"},
 {"num": "1/2", "units":"C", "item":"White onion, chopped"},
! {"num": "1", "units":"tbl", "item":"Fresh squeezed lemon juice"},
! {"num": "1", "item":"Jalapeno pepper, diced"},
! {"num": "1", "units":"tbl", "item":"Fresh cilantro, minced"},
! {"num": "3", "units":"tsp", "item":"Sea Salt"},
! {"num": "6", "units":"bottles","item":"Ice-cold beer"}
!],
 "directions" : "Combine all ingredients and hand whisk to desired
consistency. Serve and enjoy with ice-cold beers."
 }
}

• Extremely common in web-services

Copyright (C) 2014, http://www.dabeaz.com 4-60

JSON-Dict Translation
• Converting a dict to JSON

>>> import json
>>> s = {'name':'GOOG', 'shares':100, 'price':490.1}
>>> encoded = json.dumps(s)
>>> encoded
'{"price": 490.1, "name": "GOOG", "shares": 100}'
>>>

• Converting JSON into a dict
>>> json.loads(encoded)
{u'price': 490.1, u'name': u'GOOG', u'shares': 100}
>>>

137

Copyright (C) 2014, http://www.dabeaz.com 4-61

JSON Notes
• JSON is almost identical to Python syntax

>>> s = { 'a': True, 'b': None}
>>> json.dumps(s)
'{"a": true, "b": null}'
>>>

• Decoded JSON always uses Unicode (UTF-8)
>>> json.loads(encoded)
{u'price': 490.1, u'name': u'GOOG', u'shares': 100}
>>>

• Unicode is discussed a bit later (Chapter 9)

Copyright (C) 2014, http://www.dabeaz.com 4-

Binary Data

• Binary data - low-level machine data

• Examples : 16-bit integers, 32-bit integers, 64-
bit double precision floats, packed strings, etc.

• Raw low-level data that you typically
encounter with typed programming languages
such as C, C++, Java, etc.

• Common with multimedia (images, video) as
well as hardware control (serial ports, etc.)

62

138

Copyright (C) 2014, http://www.dabeaz.com 4-

Binary File I/O

63

• To obtain binary data, you'll typically read it
from a file, pipe, network socket, etc.

• For files, there are special modes

f = open(filename,"rb") # Read, binary mode
f = open(filename,"wb") # Write, binary mode
f = open(filename,"ab") # Append, binary mode

• Disables all newline translation (reads/writes)

• Required for binary data on Windows

• Optional on Unix (a portability gotcha)

Copyright (C) 2014, http://www.dabeaz.com 4-

Binary Data Representation

• To manipulate binary data, use strings

• In Python 2, strings are just byte sequences

64

bytes = '\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00'

\xhh - Encodes an arbitrary byte (hh)

• All of the normal string operations work
except that you may have to specify a lot of
non-text characters using \xhh escape codes

139

Copyright (C) 2014, http://www.dabeaz.com 4-

Binary Data Representation
• In Python 2.6 and newer, a special syntax

should be used if you are writing byte literal
strings in your program

65

header = b'\x89PNG\r\n'

byte string prefix

• This has been added to disambiguate text
(Unicode) strings and raw byte strings

• A caution : This is optional in Python 2, but
required in Python 3

Copyright (C) 2014, http://www.dabeaz.com 4-

Binary Data Packing

• A common operation with binary data is to
pack or unpack values from byte strings

66

b'%\x00\x00\x00*\x00\x00\x00'37, 42

python raw byte stringpack

unpack

• Packing/unpacking is about type conversion

• Converting low-level data to/from built-in Python
types such as ints, floats, strings, etc.

140

Copyright (C) 2014, http://www.dabeaz.com 4-

struct module

• Packs/unpacks binary records and structures
import struct

Unpack two raw 32-bit integers from a string
x,y = struct.unpack('ii',s)

Pack a set of fields
r = struct.pack('8sif', 'GOOG', 100, 490.10)

67

• Unpacking is used when reading binary data

• Packing is used when writing binary data

Copyright (C) 2014, http://www.dabeaz.com 4-

struct module
• Packing/unpacking codes (based on C)

'c' char (1 byte string)
'b' signed char (8-bit integer)
'B' unsigned char (8-bit integer)
'h' short (16-bit integer)
'H' unsigned short (16-bit integer)
'i' int (32-bit integer)
'I' unsigned int (32-bit integer)
'l' long (32 or 64 bit integer)
'L' unsigned long (32 or 64 bit integer)
'q' long long (64 bit integer)
'Q' unsigned long long (64 bit integer)
'f' float (32 bit)
'd' double (64 bit)
's' char[] (String)
'p' char[] (String with 8-bit length)
'P' void * (Pointer)

68

141

Copyright (C) 2014, http://www.dabeaz.com 4-

struct module
• Each code may be preceded by a repeat count

'4i' 4 integers
'20s' 20-byte string

• Integer alignment modifiers

'@' Native byte order and alignment
'=' Native byte order, standard alignment
'<' Little-endian, standard alignment
'>' Big-endian, standard alignment
'!' Network (big-endian), standard align

• Unless otherwise specified, fields are simply
packed together with no alignment or padding

69

Copyright (C) 2014, http://www.dabeaz.com 4-

struct Example
• An IP packet header has this structure

• To unpack in Python, might do this:

ver hlen tos length

ident fragment

ttl proto checksum
sourceaddr

destaddr

32-bits

(vhlen,tos,length,
 ident,fragment,
 ttl,proto,checksum,
 sourceaddr,
 destaddr) = struct.unpack("!BBHHHBBHII", pkt)

ver = (vhlen & 0xf0) >> 4
hlen = vhlen & 0x0f

70

142

Copyright (C) 2014, http://www.dabeaz.com 4-

Exercise 4.4

71

(Optional)

Time : 15 Minutes

Copyright (C) 2014, http://www.dabeaz.com 4-

collections Module

• An assortment of special-purpose containers

• deque - Queue

• Counter - Tabulation/Histograms

• defaultdict - Dicts with automatic init

• OrderedDict - Order-preserving dictionary

72

143

Copyright (C) 2014, http://www.dabeaz.com 4-

deques
• Similar to a list, but append/pop on either end

>>> from collections import deque
>>> items = deque([3,4])
>>> items.append(9)
>>> items.appendleft(1)
>>> items
deque([1,3,4,9])
>>>

73

• Removing items
>>> items.pop()
9
>>> items.popleft()
1
>>>

• Much faster than a normal list for this

Copyright (C) 2014, http://www.dabeaz.com 4-

Counters
• Sometimes you want to tabulate (histograms)

• Easy solution: Counter objects

74

from collections import Counter

words = ['yes','but','no','but','yes']
wordcounts = Counter(words)

• Maps items to an integer count
>>> wordcounts['yes']
2
>>> wordcounts['no']
1
>>>

144

Copyright (C) 2014, http://www.dabeaz.com 4-

Counters
• Counters can rank things

75

words = ['Look', 'into', 'my', 'eyes', 'look', 'into',
 'my', 'eyes', 'the', 'eyes', 'the', 'eyes',
 'the', 'eyes', 'not', 'around', 'the', 'eyes',
 "don't", 'look', 'around', 'the', 'eyes',
 'look', 'into', 'my', 'eyes', "you're", 'under']

>>> c = Counter(words)
>>> c.most_common(3)
[('eyes', 8), ('the', 5), ('look', 3)]
>>>

• Counters are cool

Copyright (C) 2014, http://www.dabeaz.com 4-

defaultdict
• A dict that automatically initializes elements

76

>>> from collections import defaultdict
>>> d = defaultdict(int)
>>> d['x']
0
>>> d['y']
0
defaultdict(<type 'int'>, {'x': 0, 'y': 0})
>>>

• Very useful to combine inserts with another
operation (e.g., adding)
>>> d['z'] += 42
>>> d
defaultdict(<type 'int'>, {'x': 0, 'y': 0, 'z': 42})
>>>

145

Copyright (C) 2014, http://www.dabeaz.com 4-

defaultdict

• Example: dict with multiple values per key

77

>>> from collections import defaultdict
>>> d = defaultdict(list)
>>> d['x'].append(1)
>>> d['y'].append(2)
>>> d['x'].append(3)
>>> d
defaultdict(<type 'list'>, {'y': [2], 'x': [1, 3]})
>>> d['x']
[1, 3]
>>>

• Automatically creates the initial list into which
values are appended

Copyright (C) 2014, http://www.dabeaz.com 4-

defaultdict
• Example: Building an index

78

words = ['Look', 'into', 'my', 'eyes', 'look', 'into',
 'my', 'eyes', 'the', 'eyes', 'the', 'eyes',
 'the', 'eyes', 'not', 'around', 'the', 'eyes',
 "don't", 'look', 'around', 'the', 'eyes',
 'look', 'into', 'my', 'eyes', "you're", 'under']

>>> index = defaultdict(list)
>>> for n, word in enumerate(words):
 index[word].append(n)

>>> index['eyes']
[3, 7, 9, 11, 13, 17, 22, 26]
>>>

146

Copyright (C) 2014, http://www.dabeaz.com 4-

itertools
• Library that provides various iteration patterns

79

>>> import itertools
>>> a = [1, 2, 3]
>>> b = [4, 5, 6]

>>> # Sequence chaining
>>> for x in itertools.chain(a,b):
 print x,

1 2 3 4 5 6
>>>

>>> # Combinations
>>> for x in itertools.combinations(a, 2):
 print x,

(1, 2) (1, 3) (2, 3)
>>>

Copyright (C) 2014, http://www.dabeaz.com 4-

Data Grouping
• itertools.groupby(sequence, [key, func])

80

data = [('1/16/2014', 1, 2),
 ('1/16/2014', 3, 4),
 ('1/16/2014', 5, 6),
 ('1/17/2014', 7, 8),
 ('1/18/2014', 9, 10),
 ('1/18/2014', 11, 12)]

>>> def date(row):
 return row[0]

>>> # Group by date
>>> for date, rows in itertools.groupby(data, get_date):
 print date, ':', len(list(rows)), 'items'

1/16/2014 : 3 rows
1/17/2014 : 1 rows
1/18/2014 : 2 rows
>>>

147

Copyright (C) 2014, http://www.dabeaz.com 4-

Exercise 4.5

81

(Optional)

Time : 10 Minutes

Copyright (C) 2014, http://www.dabeaz.com 4-

Third Party Modules

• Python has a large library of built-in modules
("batteries included")

• There are even more third party modules

• Python Package Index (PyPi)

82

http://pypi.python.org/

• Or just do a Google search for a topic

148

Copyright (C) 2014, http://www.dabeaz.com 4-

Some Notable Modules

• numpy, scipy : Arrays and vector mathematics

• pandas : Stats and data analysis

• matplotlib : Mathematical plotting

• twisted, gevent : Async I/O and networking

• django, flask : Web programming

• sqlalchemy : Databases and ORM

• ipython : Alternative interactive shell

83

Copyright (C) 2014, http://www.dabeaz.com 4-

Installing Modules

• Installation of a module is likely to take three
different forms (depends on the module)

• Platform-native installer

• OS Package Manager (Linux)

• Manual Installation

• setuptools/pip

84

149

Copyright (C) 2014, http://www.dabeaz.com 4-

Platform Native Install

• You downloaded a third party module as
an .exe (PC) or .dmg (Mac) file

• Just run this file and follow installation
instructions like you do for installing other
software

• You are only likely to see these installers for
the more major third-party extensions

85

Copyright (C) 2014, http://www.dabeaz.com 4-

OS Package Manager

• On Linux, you can often install Python
extensions using the system package manager

• Example : Ubuntu

86

bash % sudo apt-get install python-packagename

• Personal experience: It works pretty well

150

Copyright (C) 2014, http://www.dabeaz.com 4-

Manual Installation

• You downloaded a Python module or package
using a standard file format such as
a .gz, .tar.gz, .tgz, .bz2, or .zip file

• Unpack the file and look for a setup.py file in
the resulting folder

• Run Python on that setup.py file

87

bash % python setup.py install
Installation messages
...

Copyright (C) 2014, http://www.dabeaz.com 4-

pip/setuptools
• There are some third-party package managers

• Most modern and widely used is pip

88

bash % python -m pip install packagename

• Older alternative (easy_install)

bash % easy_install packagename

• Pro tip: Use pip

151

Copyright (C) 2014, http://www.dabeaz.com 4-

Commentary

• Installing third party modules is always a
delicate matter

• More advanced modules may involve C/C++
code which has to be compiled to native code
on your platform.

• May have dependencies on other modules

• In practice, it can be very difficult if you're
building the entire environment from source

89

Copyright (C) 2014, http://www.dabeaz.com 4-

Summary

• Have looked at module/package mechanism

• Some of the very basic built-in modules

• How to install third party modules

• We will focus on more of the built-in
modules later in the course

90

152

Copyright (C) 2014, http://www.dabeaz.com 4-

Exercise 4.6

91

(Optional)

Time : 15 Minutes

Copyright (C) 2014, http://www.dabeaz.com 4-

Introduction to
Numpy, Pandas, and

Matplotlib

Optional Topic

92

153

Copyright (C) 2014, http://www.dabeaz.com 4-

A Disclaimer

• These are huge modules

• Hundreds (if not thousands) of features

• Reference manual is essential

• Our focus : The "big picture" (e.g., concepts)

93

Copyright (C) 2014, http://www.dabeaz.com 4-

Working Environment
• Consider using IPython Notebook (ipython.org)

94

154

Copyright (C) 2014, http://www.dabeaz.com 4-

numpy
• A third-party module available here:

95

• In a nutshell, numpy provides the following

• A useful N-dimensional array object

• High-performance operations for
manipulating the array data

• An assortment of numerical algorithms

http://numpy.org/

Copyright (C) 2014, http://www.dabeaz.com 4-

Numpy Arrays
• The centerpiece of numpy : The array

96

import numpy
a = numpy.zeros(shape=(M,N),dtype=float)

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

• A collection of values like arrays in C/Fortran

155

Copyright (C) 2014, http://www.dabeaz.com 4-

Array Shape
• Arrays have a shape (dimensions)

97

import numpy
a = numpy.zeros(shape=(M,N),dtype=float)

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

M rows

N columns

• Note : Could have fewer/more dimensions

Copyright (C) 2014, http://www.dabeaz.com 4-

Array Shape
• 1-dimension array

98

>>> a = numpy.zeros(shape=5, dtype=float)
>>> a
array([0., 0., 0., 0., 0.])
>>>

• 3-dimensional array
>>> a = numpy.zeros(shape=(5,5,5), dtype=float)
>>> a
array([[[0., 0., 0., 0., 0.],
 ...
 [0., 0., 0., 0., 0.]],

 [[0., 0., 0., 0., 0.],
 ...
 [0., 0., 0., 0., 0.]]]
>>>

156

Copyright (C) 2014, http://www.dabeaz.com 4-

Array Type
• Arrays have a specified datatype

99

import numpy
a = numpy.zeros(shape=(M,N),dtype=float)

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

M rows

N columns

• Every element must be of that type (no mixed
datatypes like a Python list)

Copyright (C) 2014, http://www.dabeaz.com 4-

Array Access
• Accessing a single item [row,column]

100

a[i,j]

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

i

j

• Note: different than accessing nested lists

157

Copyright (C) 2014, http://www.dabeaz.com 4-

Array Access
• Accessing an entire row

101

a[i]

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

Copyright (C) 2014, http://www.dabeaz.com 4-

Array Access
• Accessing an entire column

102

a[:,j]

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

158

Copyright (C) 2014, http://www.dabeaz.com 4-

Array Access
• Accessing a region (slice)

103

a[i1:i2, j1:j2]

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

j1 j2

i1

i2

• Note: Standard slicing rules apply (the ending
index is not included)

Copyright (C) 2014, http://www.dabeaz.com 4-

Array Assignment
• Assignments work as long as right hand side

can be made to fit

104

a[1:3,2:4] = [[1.0 ,2.0], [3.0, 4.0]]

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 2.0 0.0 0.0

0.0 0.0 3.0 4.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

• Will get an error if size mismatch

159

Copyright (C) 2014, http://www.dabeaz.com 4-

Array Assignment
• Assignments work as long as right hand side

can be made to fit

105

a[1:3,2:4] = [1.0 ,2.0]

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 2.0 0.0 0.0

0.0 0.0 1.0 2.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

Note: value gets
broadcast across

the rows

Copyright (C) 2014, http://www.dabeaz.com 4-

Array Assignment
• Assignments work as long as right hand side

can be made to fit

106

a[1:3,2:4] = 1.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 1.0 0.0 0.0

0.0 0.0 1.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

Assigning a scalar
just sets every

element to that value

160

Copyright (C) 2014, http://www.dabeaz.com 4-

Array Math

• Operations with scalars - Apply to all elements

107

>>> a = array([1,2,3,4])
>>> a + 10
array([11, 12, 13, 14])
>>> a * 10
array([10, 20, 30, 40])
>>>

• These operations create a new array as a result

Copyright (C) 2014, http://www.dabeaz.com 4-

Array Math

• Operations with other arrays

108

>>> a = array([[1,2,3],[4,5,6]])
>>> b = array([[10,11,12],[13,14,15]])
>>> a + b
array([[11, 13, 15],
 [17, 19, 22]])
>>> a * b
array([[10, 22, 36],
 [52, 70, 96]])
>>>

• Operations are performed on an element-by-
element basis (note: not linear algebra)

161

Copyright (C) 2014, http://www.dabeaz.com 4-

Universal Functions
• Operations that apply to all elements

109

numpy.sin(a)
numpy.cos(a)
numpy.tan(a)
numpy.sqrt(a)
numpy.log(a)
numpy.atan(a)
...

• There are more than 60 such functions

• Example:
>>> a = numpy.array([1,2,3,4])
>>> b = numpy.sqrt(a)
>>> b
array([1., 1.41421356, 1.73205081, 2.])
>>>

Copyright (C) 2014, http://www.dabeaz.com 4-

Big Picture
• To best use numpy, you try to apply operations

to the entire array (or a large region) at once

110

• Why? High performance.

• You don't write code like this:
for i in xrange(rows):
 for j in xrange(columns):
 a[i,j] +=1 # Increment a single element

• Instead, you write this
a +=1 # Increment all elements

162

Copyright (C) 2014, http://www.dabeaz.com 4-

Array Conditionals
• Conditionals (<,>,<=,>=,==,!=) make arrays

111

>>> a = numpy.array([3,-4,-2,4,5])
>>> b = a < 0
>>> b
array([False, True, True, False, False], dtype=bool)
>>>

• where(condition, x, y) - Selects values from x or y
depending on the values of condition
>>> numpy.where(b,a,0)
array([0, -4, -2, 0, 0])
>>>

Copyright (C) 2014, http://www.dabeaz.com 4-

Array Conditionals
• Example : Evaluate this function on an array

112

def f(x):
 if x < 0:
 return (1-x)
 else:
 return cos(x)

• Solution:
>>> xvalues = numpy.arange(-5,6)
>>> xvalues
array([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5])
>>> yvalues = numpy.where(xvalues < 0,
 1-xvalues,
 numpy.cos(xvalues))
>>> yvalues
array([6., 5., 4., 3., 2., 1.,0.54030231, -0.41614684,
-0.9899925 ,-0.65364362, 0.28366219])
>>>

163

Copyright (C) 2014, http://www.dabeaz.com 4-

Matrices
• numpy provides a matrix object to support

linear algebra operations

113

>>> a * 3
matrix([[3, 6, 9],
 [12, 15, 18],
 [21, 24, 27]])
>>> a + 10
matrix([[11, 12, 13],
 [14, 15, 16],
 [17, 18, 19]])
>>>

>>> from numpy import matrix
>>> a = matrix([[1,2,3],[4,5,6],[7,8,9]])

• Operations with scalars work as before

Copyright (C) 2014, http://www.dabeaz.com 4-

Matrices
• Operations involving other matrices follow

standard library algebra rules

114

>>> a = matrix([[1,2,3],[4,5,6],[7,8,9]])
>>> b = matrix([[10,11,12]])
>>> a * b
Traceback (most recent call last):
...
ValueError: objects are not aligned
>>> b * a
matrix([[138, 171, 204]])
>>>

• There are many other operations (eigenvalues,
svd decomposition, qr decomposition, etc.)

• However, this isn't a linear algebra masterclass

164

Copyright (C) 2014, http://www.dabeaz.com 4-

Exercise data.1

115

Time : 15 Minutes

Copyright (C) 2014, http://www.dabeaz.com 4-

Pandas
• Python Data Analysis Library

116

• Provides

• Data analysis functionality

• Stats functions

• Various file formats (CSV, Excel, etc.)

http://pandas.pydata.org

165

Copyright (C) 2014, http://www.dabeaz.com 4-

Dataframes
• Centerpiece of Pandas is a "Dataframe"

• A collection of typed columns

117

name,shares,price
"AA",100,32.20
"IBM",50,91.10
"CAT",150,83.44
"MSFT",200,51.23
"GE",95,40.37
"MSFT",50,65.10
"IBM",100,70.44

csv

pandas.read_csv()

 name shares price
(object) (int64) (float64)
0 AA 100 32.20
1 IBM 50 91.10
2 CAT 150 83.44
3 MSFT 200 51.23
4 GE 95 40.37
5 MSFT 50 65.10
6 IBM 100 70.44

dataframe

• Each column is a "series" (like a numpy array)

Copyright (C) 2014, http://www.dabeaz.com 4-

Dataframes
• Think spreadsheets...

118

>>> df = pandas.read_csv('portfolio.csv')
>>> df
 name shares price
0 AA 100 32.20
1 IBM 50 91.10
2 CAT 150 83.44
3 MSFT 200 51.23
4 GE 95 40.37
5 MSFT 50 65.10
6 IBM 100 70.44
>>>

• Columns and rows

166

Copyright (C) 2014, http://www.dabeaz.com 4-

Dataframes
• Column access (use the column header)

119

>>> df['shares']
0 100
1 50
2 150
3 200
4 95
5 50
6 100
Name: shares, dtype: int64
>>>

• Accessing a specific row item
>>> df['shares'][4]
95
>>>

Copyright (C) 2014, http://www.dabeaz.com 4-

Filtering
• Filtering on a column

120

>>> df['name'] == 'IBM'
0 False
1 True
2 False
3 False
4 False
5 False
6 True
Name: name, dtype: bool

>>> df[df['name'] == 'IBM']
 name shares price
1 IBM 50 91.10
6 IBM 100 70.44
>>>

>>> df['shares'] > 100
0 False
1 False
2 True
3 True
4 False
5 False
6 False
Name: shares, dtype: bool

>>> df[df['shares'] > 100]
 name shares price
2 CAT 150 83.44
3 MSFT 200 51.23
>>>

167

Copyright (C) 2014, http://www.dabeaz.com 4-

Sorting

121

>>> df.sort('name')
 name shares price
0 AA 100 32.20
2 CAT 150 83.44
4 GE 95 40.37
1 IBM 50 91.10
6 IBM 100 70.44
3 MSFT 200 51.23
5 MSFT 50 65.10

>>> df.sort('shares')
 name shares price
1 IBM 50 91.10
5 MSFT 50 65.10
4 GE 95 40.37
0 AA 100 32.20
6 IBM 100 70.44
2 CAT 150 83.44
3 MSFT 200 51.23
>>>

>>> df.sort('shares',
ascending=False)
 name shares price
3 MSFT 200 51.23
2 CAT 150 83.44
6 IBM 100 70.44
0 AA 100 32.20
4 GE 95 40.37
5 MSFT 50 65.10
1 IBM 50 91.10
>>>

Copyright (C) 2014, http://www.dabeaz.com 4-

Grouping

122

>>> for name, frame in df.groupby('name'):
... ! print ':::', name
... ! print frame
...
::: AA
 name shares price
0 AA 100 32.2
::: CAT
 name shares price
2 CAT 150 83.44
::: GE
 name shares price
4 GE 95 40.37
::: IBM
 name shares price
1 IBM 50 91.10
6 IBM 100 70.44
::: MSFT
 name shares price
3 MSFT 200 51.23
5 MSFT 50 65.10
>>>

168

Copyright (C) 2014, http://www.dabeaz.com 4-

Grouping/Aggregation

123

>>> total_shares = df.groupby('name')['shares'].sum()
>>> total_shares
name
AA 100
CAT 150
GE 95
IBM 150
MSFT 250
Name: shares, dtype: int64

>>> total_shares['MSFT']
250
>>>

Copyright (C) 2014, http://www.dabeaz.com 4-

Comments

124

• Pandas is a little weird at first

• Very powerful

• An alternative to list comprehensions and
similar list processing techniques

• Inspired more by R than typical Python idioms

169

Copyright (C) 2014, http://www.dabeaz.com 4-

Exercise data.2

125

Time : 15 Minutes

Copyright (C) 2014, http://www.dabeaz.com 4-

matplotlib

• A popular third-party module for making plots

126

http://matplotlib.sourceforge.net

170

Copyright (C) 2014, http://www.dabeaz.com 4-

Matplotlib
• Example of a simple x-y plot

127

>>> import matplotlib.pyplot as plt
>>> xpts = [1, 2, 3, 4, 5]
>>> ypts = [7, 4, 5, 2, 6]
>>> plot(xpts, ypts)
[<matplotlib.lines.Line2D object at 0x2fc2f10>]
>>>

Copyright (C) 2014, http://www.dabeaz.com 4-

Matplotlib
• Example of a bar plot

128

>>> import matplotlib.pyplot as plt
>>> shares = { 'IBM': 100, 'MSFT':150, 'GE':75 }
>>> xpts = range(len(shares))
>>> plt.bar(xpts, shares.values(), align='center')
>>> plt.xticks(xpts, list(shares))

171

Copyright (C) 2014, http://www.dabeaz.com 4-

Using Matplotlib
• Go to the "gallery" page

129

http://matplotlib.sourceforge.net/gallery.html

• Click on a plot that is
similar to what you
want to make

• See a code sample

• Copy/adapt it

Copyright (C) 2014, http://www.dabeaz.com 4-

Exercise data.3

130

Time : 10 Minutes

172

Classes and Objects
Section 5

Copyright (C) 2014, http://www.dabeaz.com 5-

OO in a Nutshell

• A programming technique where code is
organized as a collection of "objects"

• An "object" consists of

• Data (attributes)

• Methods (functions applied to object)

• You've already been doing it

2

173

Copyright (C) 2014, http://www.dabeaz.com 5-

OO in a Nutshell

• Example: Lists

3

>>> nums = [1, 2, 3]
>>> nums.append(4) # Method
>>> nums.insert(1,10) # Method
>>>

• nums is an "instance" of a list

• methods are attached to the instance

Copyright (C) 2014, http://www.dabeaz.com 5-

The class statement
• How to define your own custom objects

class Circle(object):
 def __init__(self, radius):
 self.radius = radius

 def area(self):
 return math.pi * (self.radius ** 2)

 def perimeter(self):
 return 2 * math.pi * self.radius

• What is a class?

• It's a collection of functions that perform
various operations on instances

4

174

Copyright (C) 2014, http://www.dabeaz.com 5-

Instances
• Created by calling the class as a function

• Each instance has its own data

>>> c.area()
50.26548245743669
>>> d.perimeter()
31.415926535897931
>>>

5

>>> c = Circle(4.0)
>>> d = Circle(5.0)
>>>

>>> c.radius
4.0
>>> d.radius
5.0
>>>

• You invoke methods on instances to do things

Copyright (C) 2014, http://www.dabeaz.com 5-

__init__ method
• This method initializes a new instance

• Called whenever a new object is created
>>> c = Circle(4.0)

class Circle(object):
 def __init__(self, radius):
 self.radius = radius

newly created object

• __init__ is example of a "special method"

• Has special meaning to Python interpreter

6

175

Copyright (C) 2014, http://www.dabeaz.com 5-

Instance Data
• Each instance has its own data (attributes)

class Circle(object):
 def __init__(self,radius):
 self.radius = radius

• In other code, you just use the variable that
you're using to name the instance

• Inside methods, you refer to this data using self
def area(self):
 return math.pi * (self.radius ** 2)

>>> c = Circle(4.0)
>>> c.radius
4.0

7

Copyright (C) 2014, http://www.dabeaz.com 5-

Methods
• Functions applied to instances of an object

class Circle(object):
 ...
 def area(self):
 return math.pi * (self.radius ** 2)

• By convention, the instance is called "self"

• The object is always passed as first argument
>>> c.area()

def area(self):
 ...

The name is unimportant---the object is always passed as the first
argument. It is simply Python programming style to call this
argument "self." It's similar to "this" in C++/Java.

8

176

Copyright (C) 2014, http://www.dabeaz.com 5-

Calling Other Methods
• Methods call other methods via self

class Circle(object):
 def area(self):
 return math.pi * (self.radius ** 2)

 def print_area(self):
 print self.area()

9

• A caution : Code like this doesn't work
class Circle(object):
 ...
 def print_area(self):
 print area() # ! Error

• This merely calls a global function area()

Copyright (C) 2014, http://www.dabeaz.com 5-

Exercise 5.1

10

Time : 15 Minutes

177

Copyright (C) 2014, http://www.dabeaz.com 5-

Inheritance
• A tool for specializing objects

class Parent(object):
 ...

class Child(Parent):
 ...

• New class called a derived class or subclass

• Parent known as base class or superclass

• Parent is specified in () after class name

11

Copyright (C) 2014, http://www.dabeaz.com 5-

Inheritance

• What do you mean by "specialize?"

• Take an existing class and ...

• Add new methods

• Redefine some of the existing methods

• Add new attributes to instances

12

178

Copyright (C) 2014, http://www.dabeaz.com 5-

Inheritance Example

• In bill #246 of the 1897 Indiana General
Assembly, there was text that dictated a new
method for squaring a circle, which if adopted,
would have equated π to 3.2.

• Fortunately, it was never adopted because an
observant mathematician took notice...

• But, let's make a special Indiana Circle anyways...

13

Copyright (C) 2014, http://www.dabeaz.com 5-

Inheritance Example
• Specializing a class

class INCircle(Circle):
 def area(self):
 return 3.2 * (self.radius ** 2)

• Using the specialized version
>>> c = INCircle(4.0) # Calls Circle.__init__
>>> c.radius
4.0
>>> c.area() # Calls INCircle.area
51.20
>>> c.perimeter() # Calls Circle.perimeter
25.132741228718345
>>>

14

• It's the same as Circle except for area()

179

Copyright (C) 2014, http://www.dabeaz.com 5-

Using Inheritance

• Inheritance sometimes used to organize objects

class Shape(object):
 ...

class Circle(Shape):
 ...

class Rectangle(Shape):
 ...

• Think of a logical hierarchy or taxonomy

15

Copyright (C) 2014, http://www.dabeaz.com 5-

Using Inheritance

• More commonly used as a code reuse tool
class CustomHandler(TCPHandler):
 def handle_request(self):
 ...
 # Custom processing

• Base class contains general purpose code

• You inherit to customize specific parts

• Maybe it plugs into a framework

16

180

Copyright (C) 2014, http://www.dabeaz.com 5-

"is a" relationship
• Inheritance establishes a type relationship

class Shape(object):
 ...

class Circle(Shape):
 ...

>>> c = Circle(4.0)
>>> isinstance(c, Shape)
True
>>>

• Important: objects defined via inheritance are
supposed to be interchangeable with the parent

17

Copyright (C) 2014, http://www.dabeaz.com 5-

object base class
• If a class has no parent, use object as base

class Foo(object):
 ...

• object is the parent of all objects in Python

• Note : Sometimes you will see code where
classes are defined without any base class. That
is an older style of Python coding that has been
deprecated for almost 15 years. When defining
a new class, you always inherit from something.

18

181

Copyright (C) 2014, http://www.dabeaz.com 5-

Inheritance and Overriding
• Sometimes a class extends an existing method,

but it has to use the original implementation
class Foo(object):
 def spam(self):
 ...
 ...
class Bar(Foo):
 def spam(self):
 ...
 r = super(Bar, self).spam()
 ...

19

• Use super() to do it

• Admittedly, it looks a little funny

notice how both methods
have the same name.

Copyright (C) 2014, http://www.dabeaz.com 5-

Inheritance and __init__
• With inheritance, you must initialize parents

class Shape(object):
 def __init__(self):
 self.x = 0.0
 self.y = 0.0
 ...
class Circle(Shape):
 def __init__(self,radius):
 super(Circle, self).__init__() # init base
 self.radius = radius

20

• Again, you should use super() as shown

182

Copyright (C) 2014, http://www.dabeaz.com 5-

Overriding Caution
• Sometimes you will see overrides implemented

with a direct call to the parent class
class Foo(object):
 def spam(self):
 ...
 ...
class Bar(Foo):
 def spam(self):
 ...
 r = Foo.spam(self)
 ...

21

• This is an older style with subtle limitations

• Usually better to use super() instead

direct call to parent

Copyright (C) 2014, http://www.dabeaz.com 5-

Calling Other Methods
• With inheritance, the correct method gets called

if overridden (depends on the type of self)
class Circle(object):
 def area(self):
 return math.pi * (self.radius ** 2)

 def print_area(self):
 print self.area()

class INCircle(Circle):
 def area(self):
 return 3.2 * (self.radius ** 2)

22

if self is an
instance of
INCircle

• Example:
>>> c = INCircle(4)
>>> c.print_area()
51.2
>>>

183

Copyright (C) 2014, http://www.dabeaz.com 5-

Multiple Inheritance

• You can specifying multiple base classes

class Foo(object):
 ...
class Bar(object):
 ...
class Spam(Foo, Bar):
 ...

• The new class inherits features from both parents

• But there are some tricky details (later)

• Don't do it unless you know what you're doing

23

Copyright (C) 2014, http://www.dabeaz.com 5-

Exercise 5.2

24

Time : 30 Minutes

184

Copyright (C) 2014, http://www.dabeaz.com 5-

Special Methods
• Classes may define special methods

• Have special meaning to Python interpreter

• Always preceded/followed by __

class Foo(object):
 def __init__(self):
 ...

 def __del__(self):
 ...

• There are several dozen special methods

• Will show a few examples

25

Copyright (C) 2014, http://www.dabeaz.com 5-

String Conversions
• Objects have two string representations

>>> from datetime import date
>>> d = date(2012, 12, 21)
>>> print d
2012-12-21
>>> d
datetime.date(2012, 12, 21)
>>>

26

• str(x) - Printable output
>>> str(d)
'2012-12-21'
>>>

• repr(x) - For programmers
>>> repr(d)
'datetime.date(2012, 12, 21)'
>>>

185

Copyright (C) 2014, http://www.dabeaz.com 5-

String Conversions
class Date(object):
 def __init__(self, year, month, day):
 self.year = year
 self.month = month
 self.day = day

 def __str__(self):
 return '%d-%d-%d' % (self.year,
 self.month,
 self.day)

 def __repr__(self):
 return 'Date(%r,%r,%r)' % (self.year,
 self.month,
 self.day)

Note: The convention for __repr__() is to return a string that, when
fed to eval() , will recreate the underlying object. If this is not
possible, some kind of easily readable representation is used instead.

27

Copyright (C) 2014, http://www.dabeaz.com 5-

Methods: Mathematics
• Mathematical operators

a + b a.__add__(b)
a - b a.__sub__(b)
a * b a.__mul__(b)
a / b a.__div__(b)
a // b a.__floordiv__(b)
a % b a.__mod__(b)
a << b a.__lshift__(b)
a >> b a.__rshift__(b)
a & b a.__and__(b)
a | b a.__or__(b)
a ^ b a.__xor__(b)
a ** b a.__pow__(b)
-a a.__neg__()
~a a.__invert__()
abs(a) a.__abs__()

• Consult reference for further details

28

186

Copyright (C) 2014, http://www.dabeaz.com 5-

Methods: Item Access
• Methods used to implement containers

len(x) x.__len__()
x[a] x.__getitem__(a)
x[a] = v x.__setitem__(a,v)
del x[a] x.__delitem__(a)

• Use in a class
class Sequence(object):
 def __len__(self):
 ...
 def __getitem__(self,a):
 ...
 def __setitem__(self,a,v):
 ...
 def __delitem__(self,a):
 ...

29

Copyright (C) 2014, http://www.dabeaz.com 5-

Odds and Ends

• Defining new exceptions

• Bound and unbound methods

• Alternative attribute lookup

30

187

Copyright (C) 2014, http://www.dabeaz.com 5-

Defining Exceptions
• User-defined exceptions are defined by classes

• Exceptions always inherit from Exception

class NetworkError(Exception):
 pass

• Usually, it's just an empty class (use pass)

• You can also make a hierarchy

31

class AuthenticationError(NetworkError):
 pass

class ProtocolError(NetworkError):
 pass

Copyright (C) 2014, http://www.dabeaz.com 5-

Method Invocation
• Invoking a method is a two-step process

• Lookup: The . operator

• Method call: The () operator

class Stock(object):
 ...
 def cost(self):
 return self.shares*self.price

>>> s = Stock('GOOG',100,490.10)
>>> c = s.cost
>>> c
<bound method Stock.cost of <Stock object at 0x590d0>>
>>> c()
49010.0
>>>

32

Lookup

Method call

188

Copyright (C) 2014, http://www.dabeaz.com 5-

Bound Methods
• A method that has not yet been invoked by the

function call operator () is known as a "bound
method"

• It operates on the instance where it originated

33

>>> s = Stock('GOOG',100,490.10)
>>> s
<Stock object at 0x590d0>
>>> c = s.cost
>>> c
<bound method Stock.cost of <Stock object at 0x590d0>>
>>> c()
49010.0
>>>

binding

Copyright (C) 2014, http://www.dabeaz.com 5-

Bound Methods
• Why would you care?

• Often a source of careless non-obvious errors

34

>>> s = Stock('GOOG',100,490.10)
>>> print "Cost : %0.2f" % s.cost
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: float argument required, not instancemethod
>>>

Note missing ()

• Or devious behavior that's hard to debug
f = open(filename, 'w')
...
f.close Oops. Didn't do anything at all

189

Copyright (C) 2014, http://www.dabeaz.com 5-

Attribute Access
• These functions may be used to manipulate

attributes given an attribute name string
getattr(obj, 'name') # Same as obj.name
setattr(obj, 'name',value) # Same as obj.name = value
delattr(obj, 'name') # Same as del obj.name
hasattr(obj, 'name') # Tests if attribute exists

• Example: Probing for an optional attribute
if hasattr(obj, 'x'):
 x = getattr(obj, 'x'):
else:
 x = None

• Note: getattr() has a useful default value arg
x = getattr(obj, 'x', None)

35

Copyright (C) 2014, http://www.dabeaz.com 5-

Summary

• A high-level overview of classes

• Most code involving classes will involve the
topics covered in this section

• If you're merely using existing libraries, the
code is typically fairly simple

36

190

Copyright (C) 2014, http://www.dabeaz.com 5-

Exercise 5.3

37

Time : 15 Minutes

191

Copyright (C) 2014, http://www.dabeaz.com 6-

The Inner Workings of
Python Objects

Section 6

1

Copyright (C) 2014, http://www.dabeaz.com 6-

Overview

• A few more details about how objects work

• How objects are represented

• Details of attribute access

• Data encapsulation

2

192

Copyright (C) 2014, http://www.dabeaz.com 6-

Dictionaries Revisited
• A dictionary is a collection of named values

3

stock = {
 'name' : 'GOOG',
 'shares' : 100,
 'price' : 490.10
 }

• Dictionaries are commonly used for simple
data structures (shown above)

• However, they are used for critical parts of the
interpreter and may be the most important
type of data in Python

Copyright (C) 2014, http://www.dabeaz.com 6-

Dicts and Modules
• In a module, a dictionary holds all of the

global variables and functions

4

foo.py

x = 42
def bar():
 ...
def spam():
 ...

{
 'x' : 42,
 'bar' : <function bar>,
 'spam' : <function spam>
}

foo.__dict__ or globals()

193

Copyright (C) 2014, http://www.dabeaz.com 6-

Dicts and Objects

• User-defined objects also use dictionaries

• Instance data

• Class members

• In fact, the entire object system is mostly
just an extra layer that's put on top of
dictionaries

• Let's take a look...

5

Copyright (C) 2014, http://www.dabeaz.com 6-

Dicts and Instances
• A dictionary holds instance data (__dict__)

>>> s = Stock('GOOG',100,490.10)
>>> s.__dict__
{'name' : 'GOOG','shares' : 100, 'price': 490.10 }

• You populate this dict when assigning to self
class Stock(object):
 def __init__(self,name,shares,price):
 self.name = name
 self.shares = shares
 self.price = price

self.__dict__

{
 'name' : 'GOOG',
 'shares' : 100,
 'price' : 490.10
}

instance data 6

194

Copyright (C) 2014, http://www.dabeaz.com 6-

Dicts and Instances
• Critical point : Each instance gets its own

private dictionary

s = Stock('GOOG',100,490.10)
t = Stock('AAPL',50,123.45)

7

{
 'name' : 'GOOG',
 'shares' : 100,
 'price' : 490.10
}

{
 'name' : 'AAPL',
 'shares' : 50,
 'price' : 123.45
}

• So, if you created 100
instances of some
class, there are 100
dictionaries sitting
around holding data

Copyright (C) 2014, http://www.dabeaz.com 6-

Dicts and Classes
• A dictionary holds the methods of a class

class Stock(object):
 def __init__(self,name,shares,price):
 self.name = name
 self.shares = shares
 self.price = price
 def cost(self):
 return self.shares*self.price
 def sell(self,nshares):
 self.shares -= nshares

8

Stock.__dict__

{
 'cost' : <function>,
 'sell' : <function>,
 '__init__' : <function>,
}

methods

195

Copyright (C) 2014, http://www.dabeaz.com 6-

Instances and Classes
• Instances and classes are linked together

>>> s = Stock('GOOG',100,490.10)
>>> s.__dict__
{'name':'GOOG','shares':100,'price':490.10 }
>>> s.__class__
<class '__main__.Stock'>
>>>

• __class__ attribute refers back to the class

9

• The instance dictionary holds data unique to
each instance whereas the class dictionary
holds data collectively shared by all instances

Copyright (C) 2014, http://www.dabeaz.com 6-

Instances and Classes

.__dict__ {attrs}

.__class__

.__dict__ {attrs}

.__class__

.__dict__ {attrs}

.__class__

.__dict__ {methods}

instances

class

10

196

Copyright (C) 2014, http://www.dabeaz.com 6-

Attribute Access

• When you work with objects, you access
data and methods using the (.) operator

11

• These operations are directly tied to the
dictionaries sitting underneath the covers

x = obj.name # Getting
obj.name = value # Setting
del obj.name # Deleting

Copyright (C) 2014, http://www.dabeaz.com 6-

Modifying Instances
• Operations that modify an object always

update the underlying dictionary
>>> s = Stock('GOOG',100,490.10)
>>> s.__dict__
{'name':'GOOG', 'shares':100, 'price':490.10 }
>>> s.shares = 50
>>> s.date = "6/7/2007"
>>> s.__dict__
{ 'name':'GOOG', 'shares':50, 'price':490.10,
 'date':'6/7/2007'}
>>> del s.shares
>>> s.__dict__
{ 'name':'GOOG', 'price':490.10, 'date':'6/7/2007'}
>>>

12

197

Copyright (C) 2014, http://www.dabeaz.com 6-

Modifying Instances
• It may be surprising that instances can be

extended after creation

• You can freely change attributes at any time
>>> s = Stock('GOOG',100,490.10)
>>> s.blah = "some new attribute"
>>> del s.name
>>>

• Again, you're just manipulating a dictionary

• Very different from C++/Java where the
structure of an object is rigidly fixed

13

Copyright (C) 2014, http://www.dabeaz.com 6-

Reading Attributes

• Attribute may exist in two places

• Local instance dictionary

• Class dictionary

• So, both dictionaries may be checked

14

• Suppose you read an attribute on an instance

x = obj.name

198

Copyright (C) 2014, http://www.dabeaz.com 6-

Reading Attributes
• First check in local __dict__

• If not found, look in __dict__ of class

>>> s = Stock(...)
>>> s.name
'GOOG'
>>> s.cost()
49010.0
>>>

s .__dict__
.__class__

{'name': 'GOOG',
 'shares': 100 }

Stock .__dict__ {'cost': <func>,
 'sell':<func>,
 '__init__':..}

1

2

15

• This lookup scheme is how the members of
a class get shared by all instances

Copyright (C) 2014, http://www.dabeaz.com 6-

Exercise 6.1

16

Time : 10 Minutes

199

Copyright (C) 2014, http://www.dabeaz.com 6-

How Inheritance Works

class A(B,C):
 ...

• Classes may inherit from other classes

• Bases are stored as a tuple in each class
>>> A.__bases__
(<class '__main__.B'>,<class '__main__.C'>)
>>>

17

• This provides a link to parent classes

• This link simply extends the search process
used to find attributes

Copyright (C) 2014, http://www.dabeaz.com 6-

Reading Attributes
• First check in local __dict__

• If not found, look in __dict__ of class

>>> s = Stock(...)
>>> s.name
'GOOG'
>>> s.cost()
49010.0
>>>

s .__dict__
.__class__

{'name': 'GOOG',
 'shares': 100 }

Stock .__dict__ {'cost': <func>,
 'sell':<func>,
 '__init__':..}

• If not found in class, look in base classes

.__bases__

look in __bases__

1

2

3

18

200

Copyright (C) 2014, http://www.dabeaz.com 6-

Single Inheritance
• In inheritance hierarchies, attributes are

found by walking up the inheritance tree

19

class A(object): pass
class B(A): pass
class C(A): pass
class D(B): pass
class E(D): pass

object

A

B C

D

E

e = E()
e.attr e instance

• With single
inheritance, there is a
single path to the top

• You stop with the
first match

Copyright (C) 2014, http://www.dabeaz.com 6-

The MRO
• The inheritance chain is precomputed and

stored in an "MRO" attribute on the class
>>> E.__mro__
(<class '__main__.E'>, <class '__main__.D'>,
 <class '__main__.B'>, <class '__main__.A'>,
 <type 'object'>)
>>>

• "Method Resolution Order"

• To find attributes, Python walks the MRO

• First match wins

20

201

Copyright (C) 2014, http://www.dabeaz.com 6-

Multiple Inheritance

class A(object): pass
class B(object): pass
class C(A,B): pass
class D(B): pass
class E(C,D): pass

• Consider this hierarchy
object

A B

C D

E• What happens here?
e = E()
e.attr

21

• A similar search process is carried out, but
what is the order? That is a problem.

Copyright (C) 2014, http://www.dabeaz.com 6-

Multiple Inheritance

• Python uses "cooperative multiple inheritance"

• Big picture: Child classes can arrange their
parents to cooperate with each other

• But there are some rules...

22

Rule 1: Children before parents
Rule 2: Parents go in order

202

Copyright (C) 2014, http://www.dabeaz.com 6-

Multiple Inheritance

23

Rule 1: Children before parents
Rule 2: Parents go in order

class C(A, B):
 ... C A B

search order

• Head explosion: Python might check other
classes in-between. This is allowed by the rules.

C D B

some other class
(injected into the chain)

A

Copyright (C) 2014, http://www.dabeaz.com 6-

Multiple Inheritance

24

class A(object):
 def yow(self):
 print 'Yow!'

class B(A):
 def spam(self):
 self.yow()

B A object

search order

• Now consider

>>> b = B()
>>> b.spam()
Yow!
>>>

class C(A):
 def yow(self):
 print 'Yowzer!!'

class D(B,C):
 pass

B C object

search order

D A

>>> d = D()
>>> d.spam()
Yowzer!!
>>>

• Why? The rules

203

Copyright (C) 2014, http://www.dabeaz.com 6-

Multiple Inheritance
• Python flattens the inheritance hierarchy

>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>,
 <class '__main__.C'>, <class '__main__.A'>,
 <type 'object'>)
>>>

• Calculated using the C3 Linearization algorithm

• Merge of parent MROs according to the "rules"

• Attributes found by walking the MRO as before

25

Copyright (C) 2014, http://www.dabeaz.com 6-

Why super()?
• Always use super() when overriding methods

class B(A):
 def foo(self):
 ...
 return super(B,self).foo()

• super() delegates to the next class on the MRO

26

B A object
super()

B C object
super()

D A

• Tricky bit: You don't know what it is

204

Copyright (C) 2014, http://www.dabeaz.com 6-

Some Cautions

• Multiple inheritance is a powerful tool

• With power comes responsibility

• Frameworks/libraries sometimes use it for
advanced features involving composition of
components

• More details in an advanced course

27

Copyright (C) 2014, http://www.dabeaz.com 6-

Classes and Encapsulation

• One of the primary roles of a class is to
encapsulate data and internal
implementation details of an object

• However, a class also defines a "public"
interface that the outside world is supposed
to use to manipulate the object

• This distinction between implementation
details and the public interface is important

28

205

Copyright (C) 2014, http://www.dabeaz.com 6-

A Problem
• In Python, almost everything about classes

and objects is "open"

• You can easily inspect object internals

• You can change things at will

• There's no strong notion of access-
control (i.e., private class members)

• If you're trying to cleanly separate the
internal "implementation" from the
"interface" this becomes an issue

29

Copyright (C) 2014, http://www.dabeaz.com 6-

Python Encapsulation

• Python relies on programming conventions to
indicate the intended use of something

• Typically, this is based on naming

• There is a general attitude that it is up to the
programmer to observe the rules as opposed to
having the language enforce rules

30

206

Copyright (C) 2014, http://www.dabeaz.com 6-

Private Attributes
• Any attribute name with a leading _ is

considered to be "private"
class Person(object):
 def __init__(self, name):
 self._name = 0

31

• However, this is only a programming style

• You can still access it

>>> p = Person('Guido')
>>> p._name
'Guido'
>>> p._name = 'Dave'
>>>

Copyright (C) 2014, http://www.dabeaz.com 6-

Private Attributes
• Variant : Attribute names with two leading _

class Person(object):
 def __init__(self, name):
 self.__name = name
 • This kind of attribute is "more private"
>>> p = Person('Guido')
>>> p.__name
AttributeError: 'Person' object has no attribute '__name'
>>>

• This is actually just a name mangling trick
>>> p = Person('Guido')
>>> p._Person__name
'Guido'
>>>

32

207

Copyright (C) 2014, http://www.dabeaz.com 6-

Private Attributes

33

• Discussion: What style to use?

• Most experienced Python programmers seem
to use a single underscore

• Many consider the use of double underscores
to cause more problems than they solve

• Example: getattr(), setattr() don't work right

• You mileage might vary...

Copyright (C) 2014, http://www.dabeaz.com 6-

Problem: Simple Attributes
• Consider the following class

34

class Stock(object):
 def __init__(self, name, shares, price):
 self.name = name
 self.shares = shares
 self.price = price

s = Stock('GOOG', 100, 490.1)
s.shares = 50

• Suppose you later wanted to add validation
s.shares = "50" # --> TypeError

• How would you do it?

208

Copyright (C) 2014, http://www.dabeaz.com 6-

Managed Attributes
• You might introduce accessor methods

35

class Stock(object):
 def __init__(self, name, shares, price):
 self.name = name
 self.set_shares(shares)
 self.price = price

 def get_shares(self):
 return self._shares

 def set_shares(self, value):
 if not isinstance(value, int):
 raise TypeError('Expected an int')
 self._shares = value

• Too bad this breaks all existing code
s.shares = 50 s.set_shares(50)

functions that layer get/
set operations on top of

a private attribute

Copyright (C) 2014, http://www.dabeaz.com 6-

Properties
• An alternative approach to accessor methods

36

class Stock(object):
 def __init__(self, name, shares, price):
 self.name = name
 self.shares = shares
 self.price = price

 @property
 def shares(self):
 return self._shares

 @shares.setter
 def shares(self, value):
 if not isinstance(value, int):
 raise TypeError('Expected int')
 self._shares = value

• The syntax is a little jarring at first

209

Copyright (C) 2014, http://www.dabeaz.com 6-

class Stock(object):
 def __init__(self, name, shares, price):
 self.name = name
 self.shares = shares
 self.price = price

 @property
 def shares(self):
 return self._shares

 @shares.setter
 def shares(self, value):
 if not isinstance(value, int):
 raise TypeError('Expected int')
 self._shares = value

Properties
• Normal attribute access triggers the methods

37

• No changes needed to other source code

>>> s = Stock(...)
>>> s.shares
100
>>> s.shares = 50
>>>

get

set

Copyright (C) 2014, http://www.dabeaz.com 6-

Properties
• You don't change existing attribute access

38

class Stock(object):
 def __init__(self, name, shares, price):
 ...
 self.shares = shares
 ...
 @property
 def shares(self):
 return self._shares

 @shares.setter
 def shares(self, value):
 if not isinstance(value, int):
 raise TypeError('Expected int')
 self._shares = value

assignment
calls the setter

• Common confusion: property vs private name

210

Copyright (C) 2014, http://www.dabeaz.com 6-

Properties
• Properties are also useful if you are creating

objects where you want to have a very
consistent user interface

• Example : Computed data attributes

39

class Circle(object):
 def __init__(self, radius):
 self.radius = radius
 @property
 def area(self):
 return math.pi * (self.radius ** 2)
 @property
 def perimeter(self):
 return 2 * math.pi * self.radius

Copyright (C) 2014, http://www.dabeaz.com 6-

Properties

• Example use:

40

>>> c = Circle(4)
>>> c.radius
4
>>> c.area
50.26548245743669
>>> c.perimeter
25.132741228718345

• Commentary : Notice how there is no
obvious difference between the attributes as
seen by the user of the object

Instance Variable

Computed Properties

211

Copyright (C) 2014, http://www.dabeaz.com 6-

Uniform Access

• The last example shows how to put a more
uniform interface on an object. If you don't
do this, an object might be confusing to use:

41

>>> c = Circle(4.0)
>>> a = c.area() # Method
>>> r = c.radius # Data attribute
>>>

• Why is the () required for the area, but not
for the radius?

Copyright (C) 2014, http://www.dabeaz.com 6-

Decorator Syntax
• The @ syntax is known as "decoration"

• Specifies a modifier that's applied to a function
definition that immediately follows

42

class Circle(object):
 ...
 @property
 def area(self):
 return math.pi*self.radius**2
 ...

• It's kind of like a macro. More details are
found in Section 10 (Advanced Topics)

212

Copyright (C) 2014, http://www.dabeaz.com 6-

Properties and Accessors
• Sometimes you may want both accessor

functions and properties at the same time

43

class Stock(object):
 def __init__(self, name, shares, price):
 ...
 self.shares = shares
 ...
 def get_shares(self):
 return self._shares

 def set_shares(self, value):
 if not isinstance(value, int):
 raise TypeError('Expected int')
 self._shares = value

 shares = property(get_shares, set_shares)

• Use the property() function as shown to do it

Copyright (C) 2014, http://www.dabeaz.com 6-

__slots__ Attribute
• You can restrict the set of attribute names

class Stock(object):
 __slots__ = ('name','_shares','price')
 ...

• Produces errors for other attributes
>>> s = Stock('GOOG', 100, 490.1)
>>> s.price = 385.15
>>> s.prices = 410.2
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: 'Stock' object has no attribute 'prices'

• Prevents errors, restricts usage of objects
(but is actually used for performance)

44

213

Copyright (C) 2014, http://www.dabeaz.com 6-

Commentary

• Don't go overboard with private attributes,
properties, slots, etc.

• They serve a specific purpose and you may
see them when reading other's Python code

• Not necessary for most day-to-day coding

45

Copyright (C) 2014, http://www.dabeaz.com 6-

Exercise 6.2

46

Time : 10 Minutes

214

Testing and Debugging
Section 7

Copyright (C) 2014, http://www.dabeaz.com 7-

Overview

• Testing

• Logging, error handling, and diagnostics

• Debugging

• Profiling

2

215

Copyright (C) 2014, http://www.dabeaz.com 7-

Testing Rocks,
Debugging Sucks

• What else is there to say?

• Dynamic nature of Python makes testing
critically important to most applications

• There is no compiler to find your bugs

• Only way to find bugs is to run the code and
make sure you exercise all of its features

3

Copyright (C) 2014, http://www.dabeaz.com 7-

Testing Modules

• There are two core modules for testing

• doctest

• unittest

• Programmers tend to use both, but for
different purposes

4

216

Copyright (C) 2014, http://www.dabeaz.com 7-

Testing: doctest module
• A module that runs interactive examples

embedded inside documentation strings
simple.py
def add(x, y):
 '''
 Adds x and y. For example:

 >>> add(2, 2)
 5
 >>>
 '''
 return x + y

5

• Useful for making sure help documentation
matches the implementation

Copyright (C) 2014, http://www.dabeaz.com 7-

Using doctest

• Run it as a command line tool on your code

6

• It even works on documentation files

bash % python -m doctest simple.py

bash % python -m doctest README.txt

• Anything that might have interactive Python
sessions shown inside

217

Copyright (C) 2014, http://www.dabeaz.com 7-

Using doctest
• Test failures produce a report
bash % python -m doctest simple.py

File "simple.py", line 6, in simple.add
Failed example:
 add(2, 2)
Expected:
 5
Got:
 4

1 items had failures:
 1 of 1 in simple.add
Test Failed 1 failures.

7

Copyright (C) 2014, http://www.dabeaz.com 7-

Doctest Caution

• Don't go overboard with doctest

• Only use it as a documentation sanity check

• Do not use it for exhaustive testing

• Overuse is often a source of problems
(output of Python might change over time)

8

218

Copyright (C) 2014, http://www.dabeaz.com 7-

unittest Module

• A more formal testing framework

• Better suited for exhaustive testing

• Can deal with more complex test cases

9

Copyright (C) 2014, http://www.dabeaz.com 7-

Using unittest

• First, you create a separate file
testsimple.py
import simple
import unittest

class TestAdd(unittest.TestCase):
 ...

• Then you define testing classes

• They must inherit from unittest.TestCase

10

219

Copyright (C) 2014, http://www.dabeaz.com 7-

Using unittest
• Define testing methods

class TestAdd(unittest.TestCase):
 def test_simple(self):
 # Test with simple integer arguments
 r = simple.add(2, 2)
 self.assertEqual(r, 5)

 def test_str(self):
 # Test with strings
 r = simple.add('hello', 'world')
 self.assertEqual(r, 'helloworld')

• Each method must start with "test..."

11

Copyright (C) 2014, http://www.dabeaz.com 7-

Using unittest
• Each test uses special assertions

Assert that expr is True
self.assertTrue(expr)

Assert that x == y
self.assertEqual(x,y)

Assert that x != y
self.assertNotEqual(x,y) # Assert x != y

Assert that x is near y
self.assertAlmostEqual(x,y,places)

Assert that callable(arg1,arg2,...) raises exc
self.assertRaises(exc,callable,arg1,arg2,...)

• There are others

12

220

Copyright (C) 2014, http://www.dabeaz.com 7-

Running unittests
• To run tests, add the following code

testsimple.py
...
if __name__ == '__main__':
 unittest.main()

• Then run Python on the test file
bash % python testsimple.py
F.
==
FAIL: test_simple (__main__.TestAdd)
--
Traceback (most recent call last):
 File "testsimple.py", line 8, in test_simple
 self.assertEqual(r, 5)
AssertionError: 4 != 5
--
Ran 2 tests in 0.000s
FAILED (failures=1)

13

Copyright (C) 2014, http://www.dabeaz.com 7-

unittest comments

• There is an art to effective unit testing

• Can grow to be quite complicated for large
applications

• The unittest module has a huge number of
options related to test runners, collection of
results, and other aspects of testing (consult
documentation for details)

14

221

Copyright (C) 2014, http://www.dabeaz.com 7-

Third Party Test Tools
• nose - Test discovery

15

https://nose.readthedocs.org

• coverage - Code coverage

http://nedbatchelder.com/code/coverage/

• mock - Mocking and testing library

http://www.voidspace.org.uk/python/mock/

Copyright (C) 2014, http://www.dabeaz.com 7-

Exercise 7.1

16

Time : 15 Minutes

222

Copyright (C) 2014, http://www.dabeaz.com 7-

logging Module

• A commonly used module for recording
diagnostic information

• It's also a very large module with a lot of
sophisticated functionality

• Will show a simple example to illustrate

17

Copyright (C) 2014, http://www.dabeaz.com 7-

Exceptions Revisited
• In the exercises, we wrote a function parse()

that looked something like this:

18

fileparse.py
def parse(f,types=None,names=None,delimiter=None):
 records = []
 for line in f:
 line = line.strip()
 if not line: continue
 try:
 records.append(split(line,types,names,delimiter))
 except ValueError as e:
 print "Couldn't parse :", line
 print "Reason : %s" % e
 return records

• Now, focus on the try-except section

223

Copyright (C) 2014, http://www.dabeaz.com 7-

Exceptions Revisited
• Do you print a warning message?

19

try:
 records.append(split(line,types,names,delimiter))
except ValueError as e:
 print "Couldn't parse :", line
 print "Reason : %s" % e

• Or, do you silently ignore?
try:
 records.append(split(line,types,names,delimiter))
except ValueError as e:
 pass

• Neither solution is satisfactory because you
often want both behaviors (user selectable)

Copyright (C) 2014, http://www.dabeaz.com 7-

Using Logging
• The logging module can address this

20

fileparse.py
import logging
log = logging.getLogger(__name__)

def parse(f,types=None,names=None,delimiter=None):
 ...
 try:
 records.append(split(line,types,names,delimiter))
 except ValueError as e:
 log.warning("Couldn't parse : %s", line)
 log.debug("Reason : %s", e)

• Here, code is modified to issue warning
messages on a special "Logger" object

224

Copyright (C) 2014, http://www.dabeaz.com 7-

Logging Basics
• Creating a logger object

21

log = logging.getLogger(name) # name is a string

• Issuing log messages
log.critical(message [, args])
log.error(message [, args])
log.warning(message [, args])
log.info(message [, args])
log.debug(message [, args])

• Each of the above methods creates a formatted
log message (args is used for % operator)
logmsg = message % args # Written to the log

each method
represents a different

level of severity

Copyright (C) 2014, http://www.dabeaz.com 7-

Logging Configuration

• Logging behavior is configured separately

22

main.py
...
if __name__ == '__main__':
 import logging
 logging.basicConfig(
 filename = "app.log", # Log output file
 level = logging.INFO, # Output level
)

• Typically, this is a one-time configuration at
program startup

• Separate from code that makes logging calls

225

Copyright (C) 2014, http://www.dabeaz.com 7-

Big Picture

• Logging is highly configurable

• Can adjust every aspect of it (output files,
levels, message formats, etc.)

• Code that uses logging doesn't have to worry
about that however (it just issues messages)

• See: practical-python/Optional/Logging.pdf

23

Copyright (C) 2014, http://www.dabeaz.com 7-

Exercise 7.2

24

Time : 10 Minutes

226

Copyright (C) 2014, http://www.dabeaz.com 7-

Assertions

• assert statement

assert expr [, "diagnostic message"]

• If expression is not true, raises
AssertionError exception

• Should not be used to check user-input

• Use for internal program checking

25

Copyright (C) 2014, http://www.dabeaz.com 7-

Contract Programming
• Consider assertions on all inputs and outputs

26

def add(x, y):
 assert isinstance(x, int), "Expected int"
 assert isinstance(y, int), "Expected int"
 return x + y

• Checking inputs will immediately catch callers
who aren't using appropriate arguments
>>> add(2, 3)
5
>>> add("2", "3")
Traceback (most recent call last):
...
AssertionError: Expected int
>>>

227

Copyright (C) 2014, http://www.dabeaz.com 7-

Optimized mode

• Python has an optimized run mode
bash % python -O prog.py

• This strips all assert statements

• Allows debug/release mode development

• Normal mode for full debugging

• Optimized mode for faster production runs

27

Copyright (C) 2014, http://www.dabeaz.com 7-

__debug__ variable

• Global variable checked for debugging
if __debug__:
 # Perform some kind of debugging code
 ...

• By default, __debug__ is True

• Set False in optimized mode (python -O)

• The implementation is efficient. The if
statement is stripped in both cases and in -O
mode, the debugging code is stripped
entirely.

28

228

Copyright (C) 2014, http://www.dabeaz.com 7-

Error Handling
• Keeping Python alive upon termination
bash % python -i blah.py
Traceback (most recent call last):
 File "blah.py", line 13, in ?
 foo()
 File "blah.py", line 10, in foo
 bar()
 File "blah.py", line 7, in bar
 spam()
 File "blah.py", line 4, in spam
 x.append(3)
AttributeError: 'int' object has no attribute 'append'
>>>

• Python enters normal interactive mode

• Can use to examine global data, objects, etc.

29

Copyright (C) 2014, http://www.dabeaz.com 7-

The Python Debugger
• pdb module

• Entering the debugger after a crash
bash % python -i blah.py
Traceback (most recent call last):
 File "blah.py", line 13, in ?
 foo()
 File "blah.py", line 10, in foo
 bar()
 File "blah.py", line 7, in bar
 spam()
 File "blah.py", line 4, in spam
 x.append(3)
AttributeError: 'int' object has no attribute 'append'
>>> import pdb
>>> pdb.pm()
> /Users/beazley/Teaching/blah.py(4)spam()
-> x.append(3)
(Pdb)

30

229

Copyright (C) 2014, http://www.dabeaz.com 7-

The Python Debugger

• Launching the debugger inside a program

def some_function():
 statements
 ...
 import pdb; pdb.set_trace() # Enter the debugger
 ...
 statements

31

• This starts the debugger at the point of the
set_trace() call

Copyright (C) 2014, http://www.dabeaz.com 7-

Python Debugger
• Common debugger commands

(Pdb) help # Get help
(Pdb) w(here) # Print stack trace
(Pdb) d(own) # Move down one stack level
(Pdb) u(p) # Move up one stack level
(Pdb) b(reak) loc # Set a breakpoint
(Pdb) s(tep) # Execute one instruction
(Pdb) c(ontinue) # Continue execution
(Pdb) l(ist) # List source code
(Pdb) a(rgs) # Print args of current function
(Pdb) !statement # Execute statement

• For breakpoints, location is one of
(Pdb) b 45 # Line 45 in current file
(Pdb) b file.py:45 # Line 34 in file.py
(Pdb) b foo # Function foo() in current file
(Pdb) b module.foo # Function foo() in a module

32

230

Copyright (C) 2014, http://www.dabeaz.com 7-

Python Debugger

• Running entire program under debugger

bash % python -m pdb someprogram.py

• Automatically enters the debugger before
the first statement (allowing you to set
breakpoints and change the configuration)

33

Copyright (C) 2014, http://www.dabeaz.com 7-

Remote Debugging
• Use rpdb (https://pypi.python.org/pypi/rpdb/)

def some_function():
 statements
 ...
 import rpdb; rpdb.set_trace()
 ...
 statements

34

• Stops and allows pdb access via telnet
bash % telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
> /some/code/program.py(10)some_function()
-> statement
(Pdb)

231

Copyright (C) 2014, http://www.dabeaz.com 7-

Profiling

• cProfile module

• Collects statistics and prints a report

• Run run it from the command shell
bash % python -m cProfile someprogram.py

35

Copyright (C) 2014, http://www.dabeaz.com 7-

Profile Sample Output
bash % python -m cProfile cparse.py
 447981 function calls (446195 primitive calls) in
5.640 CPU seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno
(function)
 2 0.000 0.000 0.000 0.000 :0(StringIO)
 101599 0.470 0.000 0.470 0.000 :0(append)
 56 0.000 0.000 0.000 0.000 :0(callable)
 4 0.000 0.000 0.000 0.000 :0(close)
 1028 0.010 0.000 0.010 0.000 :0(cmp)
 4 0.000 0.000 0.000 0.000 :0(compile)
 1 0.000 0.000 0.000 0.000 :0(digest)
 2 0.000 0.000 0.000 0.000 :0(exc_info)
 1 0.000 0.000 5.640 5.640 :0(execfile)
 4 0.000 0.000 0.000 0.000 :0(extend)
 50 0.000 0.000 0.000 0.000 :0(find)
 83102 0.430 0.000 0.430 0.000 :0(get)
...

36

232

Copyright (C) 2014, http://www.dabeaz.com 7-

Summary

• Testing with doctest and unittest

• Logging

• Debugging (pdb)

• Profiling

37

Copyright (C) 2014, http://www.dabeaz.com 7-

Exercise 7.3

38

Time : 10 Minutes

233

Generators
Section 8

Copyright (C) 2014, http://www.dabeaz.com 8-

Iteration

• A simple definition: Looping over items
a = [2,4,10,37,62]
Iterate over a
for x in a:
 ...

• A very common pattern

• loops, list comprehensions, etc.

• Most programs do a huge amount of iteration

2

234

Copyright (C) 2014, http://www.dabeaz.com 8-

Iteration Everywhere
• Many different objects support iteration

a = "hello"
for c in a: # Loop over characters in a
 ...

b = { 'name': 'Dave', 'password':'foo'}
for k in b: # Loop over keys in dictionary
 ...

c = [1,2,3,4]
for i in c: # Loop over items in a list/tuple
 ...

f = open("foo.txt")
for x in f: # Loop over lines in a file
 ...

3

Copyright (C) 2014, http://www.dabeaz.com 8-

Iteration: Protocol
• An inside look at the for statement

for x in obj:
 # statements

• Underneath the covers
_iter = obj.__iter__() # Get iterator object
while True:
 try:
 x = _iter.next() # Get next item
 except StopIteration: # No more items
 break
 # statements
 ...

• Objects that work with the for-loop all
implement this low-level iteration protocol

4

235

Copyright (C) 2014, http://www.dabeaz.com 8-

Iteration: Protocol
• Example: Manual iteration over a list

>>> x = [1,2,3]
>>> it = x.__iter__()
>>> it
<listiterator object at 0x590b0>
>>> it.next()
1
>>> it.next()
2
>>> it.next()
3
>>> it.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
StopIteration
>>>

5

Copyright (C) 2014, http://www.dabeaz.com 8-

Supporting Iteration
• Knowing about iteration is useful if you

want to add it to your own objects

• Example: Custom containers

class Portfolio(object):
 def __init__(self):
 self.holdings = []
 def __iter__(self):
 return self.holdings.__iter__()
 ...

port = Portfolio()
for s in port:
 ...

6

236

Copyright (C) 2014, http://www.dabeaz.com 8-

The itertools Module

7

• A library module with various functions
designed to help with iteration
itertools.chain(s1,s2)
itertools.count(n)
itertools.cycle(s)
itertools.dropwhile(predicate, s)
itertools.groupby(s)
itertools.ifilter(predicate, s)
itertools.imap(function, s1, ... sN)
itertools.repeat(s, n)
itertools.tee(s, ncopies)
itertools.izip(s1, ... , sN)

• All functions process data iteratively.

• Implement various kinds of iteration patterns

Copyright (C) 2014, http://www.dabeaz.com 8-

Exercise 8.1

8

Time : 10 Minutes

237

Copyright (C) 2014, http://www.dabeaz.com 8-

Customizing Iteration

• Suppose you wanted to create your own
custom iteration pattern

• Example: Counting down...

>>> for x in countdown(10):
... print x,
...
10 9 8 7 6 5 4 3 2 1
>>>

9

• It turns out there is a very easy way to do it

Copyright (C) 2014, http://www.dabeaz.com 8-

Generators

• A function that defines iteration

def countdown(n):
 while n > 0:
 yield n
 n -= 1
>>> for i in countdown(5):
... print i,
...
5 4 3 2 1
>>>

• Any function that uses yield is a generator

10

238

Copyright (C) 2014, http://www.dabeaz.com 8-

Generator Functions
• Behavior is totally different than normal func

• Calling a generator function creates an
generator object. It does not start running
the function.
def countdown(n):
 print "Counting down from", n
 while n > 0:
 yield n
 n -= 1

>>> x = countdown(10)
>>> x
<generator object at 0x58490>
>>>

Notice that no
output was
produced

11

Copyright (C) 2014, http://www.dabeaz.com 8-

Generator Functions
• Function only executes on next()

>>> x = countdown(10)
>>> x
<generator object at 0x58490>
>>> x.next()
Counting down from 10
10
>>>

• yield produces a value, but suspends function

• Function resumes on next call to next()
>>> x.next()
9
>>> x.next()
8
>>>

Function starts
executing here

12

239

Copyright (C) 2014, http://www.dabeaz.com 8-

Generator Functions

• When the generator returns, iteration stops
>>> x.next()
1
>>> x.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
StopIteration
>>>

13

• Observation : A generator function implements
the same low-level protocol that the for
statement uses on lists, tuples, dicts, files, etc.

Copyright (C) 2014, http://www.dabeaz.com 8-

Exercise 8.2

14

Time : 15 Minutes

240

Copyright (C) 2014, http://www.dabeaz.com 8-

Producers & Consumers
• Generators are closely related to various

forms of "producer-consumer" programming

def follow(f):
 ...
 while True:
 ...
 yield line
 ...

15

for line in follow(f):
 ...

producer

consumer

• yield produces values

• for consume values

Copyright (C) 2014, http://www.dabeaz.com 8-

Generator Pipelines

• You can use this aspect of generators to set
up processing pipelines (like Unix pipes)

• Big picture:

16

• Processing pipes have an initial data
producer, some set of intermediate
processing stages, and a final consumer

producer processing processing consumer

241

Copyright (C) 2014, http://www.dabeaz.com 8-

Generator Pipelines

17

• Producer is typically a generator (although it
could also be a list or some other sequence)

• yield feeds data into the pipeline

producer processing processing consumer

def producer():
 ...
 yield item
 ...

Copyright (C) 2014, http://www.dabeaz.com 8-

Generator Pipelines

18

• Consumer is just a simple for-loop

• It gets items and does something with them

producer processing processing consumer

def producer():
 ...
 yield item
 ...

def consumer(s):
 for item in s:
 ...

242

Copyright (C) 2014, http://www.dabeaz.com 8-

Generator Pipelines

19

• Intermediate processing stages simultaneously
consume and produce items

• They might modify the data stream

• They can also filter (discarding items)

producer processing processing consumer

def producer():
 ...
 yield item
 ...

def consumer(s):
 for item in s:
 ...

def processing(s):
 for item in s:
 ...
 yield newitem
 ...

Copyright (C) 2014, http://www.dabeaz.com 8-

Generator Pipelines

20

• You will notice that data incrementally flows
through the different functions

producer processing processing consumer

def producer():
 ...
 yield item
 ...

def consumer(s):
 for item in s:
 ...

def processing(s):
 for item in s:
 ...
 yield newitem
 ...

a = producer()

b = processing(a)

c = consumer(b)

• Code to set up the pipeline

243

Copyright (C) 2014, http://www.dabeaz.com 8-

Exercise 8.3

21

Time : 15 minutes

Copyright (C) 2014, http://www.dabeaz.com 8-

Generator Expressions
• A generator version of a list comprehension

>>> a = [1,2,3,4]
>>> b = (2*x for x in a)
>>> b
<generator object at 0x58760>
>>> for i in b: print i,
...
2 4 6 8
>>>

• Important differences

• Does not construct a list.

• Only useful purpose is iteration

• Once consumed, can't be reused

22

244

Copyright (C) 2014, http://www.dabeaz.com 8-

Generator Expressions
• General syntax

(expression for i in s if conditional)

• Can also serve as a function argument

sum(x*x for x in a)

• Can be applied to any iterable
>>> a = [1,2,3,4]
>>> b = (x*x for x in a)
>>> c = (-x for x in b)
>>> for i in c: print i,
...
-1 -4 -9 -16
>>>

23

Copyright (C) 2014, http://www.dabeaz.com 8-

Generator Expressions
• Main use of generator expressions is in

code that performs some calculation on a
sequence, but only uses the result once

• Example : Strip all comments from a file

f = open("somefile.txt")
lines = (line for line in f if not line.startswith("#"))
for line in lines:
 ...
f.close()

24

• Code runs faster and uses little memory (it's
like a filter applied to a stream)

245

Copyright (C) 2014, http://www.dabeaz.com 8-

Exercise 8.4

25

Time : 10 Minutes

Copyright (C) 2014, http://www.dabeaz.com 8-

Why Use Generators?

• Many problems are much more clearly
expressed in terms of iteration

• Looping over a collection of items and
performing some kind of operation
(searching, replacing, modifying, etc.)

• Processing pipelines can be applied to a
wide range of data processing problems

26

246

Copyright (C) 2014, http://www.dabeaz.com 8-

Why Use Generators?

• Generators encourage code reuse

• Separate the "iteration" from code that
uses the iteration.

• Means that various iteration patterns can
be defined more generally.

27

Copyright (C) 2014, http://www.dabeaz.com 8-

Why Use Generators?

• Better memory efficiency

• "Lazy" evaluation

• Only produce values when needed

• Contrast to constructing a big list of
values first

• Can operate on infinite data streams

28

247

Copyright (C) 2014, http://www.dabeaz.com 8-

The itertools Module

29

• A library module with various functions
designed to help with iterators/generators
itertools.chain(s1,s2)
itertools.count(n)
itertools.cycle(s)
itertools.dropwhile(predicate, s)
itertools.groupby(s)
itertools.ifilter(predicate, s)
itertools.imap(function, s1, ... sN)
itertools.repeat(s, n)
itertools.tee(s, ncopies)
itertools.izip(s1, ... , sN)

• All functions process data iteratively.

• Implement various kinds of iteration patterns

Copyright (C) 2014, http://www.dabeaz.com 8-

More Information

30

http://www.dabeaz.com/generators

• "Generator Tricks for Systems
Programmers" tutorial from PyCon'08

• More examples and more generator tricks

248

Text I/O Handling
Section 9 (Optional)

Copyright (C) 2014, http://www.dabeaz.com 9-

Overview

• This sections expands upon text processing

• Generating text

• Text I/O

• Unicode

2

249

Copyright (C) 2014, http://www.dabeaz.com 9-

Generating Text

• Programs often need to generate text

• Reports

• HTML pages

• XML

• Endless possibilities

3

Copyright (C) 2014, http://www.dabeaz.com 9-

String Concatenation
• Strings can be concatenated using +

4

s = "Hello"
t = "World"

a = s + t # a = "HelloWorld"

• Although (+) is fine for just a few strings,
it has horrible performance if you are
concatenating many small chunks
together to create a large string

• Should not be used for generating output

250

Copyright (C) 2014, http://www.dabeaz.com 9-

String Joining

• The fastest way to join many strings

5

chunks = ["chunk1","chunk2",..."chunkN"]

result = separator.join(chunks)

• Example:
chunks = ["Is","Chicago","Not","Chicago?"]

" ".join(chunks) "Is Chicago Not Chicago?"
",".join(chunks) "Is,Chicago,Not,Chicago?"
"".join(chunks) "IsChicagoNotChicago?"

Copyright (C) 2014, http://www.dabeaz.com 9-

String Joining Example
• Don't do this:

6

s = ""
for x in seq:
 ...
 s += "some text being produced"
 ...

• Better:
chunks = []
for x in seq:
 ...
 chunks.append("some text being produced")
 ...
s = "".join(chunks)

251

Copyright (C) 2014, http://www.dabeaz.com 9-

String Interpolation

• In languages like Perl and Ruby, programmers
are used to string interpolation features

7

$name = "Dave";
$age = 39;

print "$name is $age years old\n";

• Python doesn't have a direct equivalent

• However, there are some alternatives

Copyright (C) 2014, http://www.dabeaz.com 9-

Built-in Formatting

• Use the format() method

8

print "{name} is {age} years old".format(name="Dave",age=39)

• Use the % operator with a dictionary

fields = {
 'name' : 'Dave',
 'age' : 39
}

print "%(name)s is %(age)s years old" % fields

252

Copyright (C) 2014, http://www.dabeaz.com 9-

Template Strings
• A special string that supports $substitutions

9

import string
s = string.Template("$name is $age years old\n")

print s.substitute(name='Dave',age=39)

• Or you can supply a dictionary

s.safe_substitute(fields)

fields = {
 'name' : 'Dave',
 'age' : 39
}
print s.substitute(fields)

• To ignore missing values, use this alternative

Copyright (C) 2014, http://www.dabeaz.com 9-

Exercise 9.1

10

Time : 15 Minutes

253

Copyright (C) 2014, http://www.dabeaz.com 9-

Text Input/Output
• You frequently read/write text from files

• Example: Reading line-by-line

11

f = open("something.txt","r")
for line in f:
 ...

• Example: Writing a line of text
f = open("something.txt","w")
f.write("Hello World\n")

print >>f, "Hello World\n"

• There are still a few issues to worry about

Copyright (C) 2014, http://www.dabeaz.com 9-

Line Handling

• Question: What is a text line?

• It's different on different operating systems

12

some characters\n (Unix)
some characters\r\n (Windows)
some characters\r (Mac)

• By default, Python uses the system's native line
ending when writing text files

• However, it can get messy when reading text
files (especially cross platform)

254

Copyright (C) 2014, http://www.dabeaz.com 9-

Line Handling

13

• Example: Reading a Windows text file on Unix

>>> f = open("test.txt","r")
>>> f.readlines()
['Hello\r\n', 'World\r\n']
>>>

• Notice how the lines include the extra
Windows '\r' character

• This is a potential source of problems for
programs that only expect '\n' line endings

Copyright (C) 2014, http://www.dabeaz.com 9-

Universal Newline

14

• Python has a special "Universal Newline" mode
>>> f = open("test.txt","U")
>>> f.read()
'Hello World\n'
>>>

• Converts all endings to standard '\n' character

• f.newlines records the actual newline
character that was used in the file
>>> f.newlines
'\r\n'
>>>

255

Copyright (C) 2014, http://www.dabeaz.com 9-

Universal Newline

15

• Example: Reading a Windows text file on Unix
>>> f = open("test.txt","r")
>>> f.readlines()
['Hello\r\n', 'World\r\n']

>>> f = open("test.txt","U")
>>> f.readlines()
['Hello\n', 'World\n']
>>> f.newlines
'\r\n'
>>>

• Notice how non-native Windows newline '\r\n'
is translated to standard '\n'

Copyright (C) 2014, http://www.dabeaz.com 9-

Text Encoding

16

• Question : What is a character?

• In Python 2, text consists of 8-bit characters

"Hello World" 48 65 6c 6c 6f 20 57 6f 72 6c 64

• Characters are usually encoded in ASCII

256

Copyright (C) 2014, http://www.dabeaz.com 9-

International Characters

17

• Problem : How to deal with characters from
international character sets?

"That's a spicy Jalapeño!"

• Question: What is the character encoding?

• Historically, everyone made a different encoding
ñ = 0x96 (MacRoman)
ñ = 0xf1 (CP1252 - Windows)
ñ = 0xa4 (CP437 - DOS)

• Bloody hell!

Copyright (C) 2014, http://www.dabeaz.com 9-

Unicode

• For international characters, use Unicode

• In Python, there is a special syntax for literals

18

t = u"That's a spicy Jalape\u00f1o!"

Unicode

• Unicode strings are just like regular strings
except that they hold Unicode characters

• What is a Unicode character?

257

Copyright (C) 2014, http://www.dabeaz.com 9-

Unicode Characters

• Unicode defines a standard numerical value
for every character used in all languages
(except for fictional ones such as Klingon)

• The numeric value is known as "code point"

• There are a lot of code points (>100,000)

19

ñ
ε
!
㌄

= U+00F1
= U+03B5
= U+0A87
= U+3304

Copyright (C) 2014, http://www.dabeaz.com 9-

Unicode Charts
• http://www.unicode.org/charts

20

258

Copyright (C) 2014, http://www.dabeaz.com 9-

Using Unicode Charts

21

t = u"That's a spicy Jalape\u00f1o!"

• \uxxxx - Embeds a Unicode code point in a string

• Code points specified in hex by convention

Copyright (C) 2014, http://www.dabeaz.com 9-

Using Unicode Charts

22

t = u"Spicy Jalape\N{LATIN SMALL LETTER N WITH TILDE}o!"

• \N{name} - Embeds a named character

• All code points also have descriptive names

259

Copyright (C) 2014, http://www.dabeaz.com 9-

Unicode Representation

• Internally, Unicode chars are 16 or 32 bits

23

t = u"Jalape\u00f1o"

004a 0061 006c 0061 0070 0065 00f1 006f

• Normally, you don't worry about this

• Except you have to perform I/O
u'J' --> 00 4a (Big Endian)
u'J' --> 4a 00 (Little Endian)

• How do characters get encoded in the file?

Copyright (C) 2014, http://www.dabeaz.com 9-

Unicode I/O

• Unicode does not define a standard file
encoding--it only defines character code values

• There are many different file encodings

24

• Examples: UTF-8, UTF-16, etc.

• Most popular: UTF-8 (ASCII is a subset)

• So, how do you deal with these encodings?

260

Copyright (C) 2014, http://www.dabeaz.com 9-

Unicode File I/O
• Unicode I/O handled using io module

• io.open(filename,mode,encoding="enc")

25

>>> f = io.open("data.txt","w",encoding="utf-8")
>>> f.write(u"Hello World\n")
>>> f.close()

>>> f = io.open("data.txt","w",encoding="utf-16")
>>> f.write(data)
>>>

• Several hundred encodings are supported

• Compatibility note : In older Python versions,
Unicode I/O handled by 'codecs' module

Copyright (C) 2014, http://www.dabeaz.com 9-

Unicode Encoding

• Explicit encoding to bytes

26

>>> a = u"Jalape\u00f1o"
>>> enc_a = a.encode("utf-8")
>>>

• Explicit decoding from bytes
>>> enc_a = 'Jalape\xc3\xb1o'
>>> a = enc_a.decode("utf-8")
>>> a
u'Jalape\xf1o'
>>>

261

Copyright (C) 2014, http://www.dabeaz.com 9-

Encoding Errors

• Encoding/Decoding text is often messy

• May encounter broken/invalid data

• The default behavior is to raise an
UnicodeError Exception

27

>>> a = u"Jalape\xf1o"
>>> b = a.encode("ascii")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode character
u'\xf1' in position 6: ordinal not in range(128)
>>>

Copyright (C) 2014, http://www.dabeaz.com 9-

Encoding Errors

• Encoding/Decoding can use an alternative
error handling policy

28

s.decode("encoding",errors)
s.encode("encoding",errors)

• Errors is one of
'strict' Raise exception (the default)
'ignore' Ignore errors
'replace' Replace with replacement character
'backslashreplace' Use escape code
'xmlcharrefreplace' Use XML character reference

262

Copyright (C) 2014, http://www.dabeaz.com 9-

Encoding Errors

• Example: Ignore bad characters

29

>>> a = u"Jalape\xf1o"
>>> a.encode("ascii",'ignore')
'Jalapeo'
>>>

• Example: Encode Unicode into ASCII
>>> a = u"Jalape\xf1o"
>>> b = a.encode("us-ascii","xmlcharrefreplace")
'Jalapeño'
>>>

Copyright (C) 2014, http://www.dabeaz.com 9-

Finding the Encoding

• How do you determine the encoding of a file?

• Might be known in advance (in the manual)

• May be indicated in the file itself

30

<meta http-equiv="Content-Type"
 content="text/html; charset=UTF-8"/>

• Depends on the data source, application, etc.

263

Copyright (C) 2014, http://www.dabeaz.com 9-

Unicode Everywhere

• Unicode is the modern standard for text

• In Python 3, all text is Unicode

• Here are some basic rules to remember:

• All text files are encoded (even ASCII)

• When you read text, you always decode

• When you write text, you always encode

31

Copyright (C) 2014, http://www.dabeaz.com 9-

A Caution
• Unicode may sneak in when you don't expect it

• Database integration

• XML Parsing

• Unicode silently propagates through string-ops

32

s = "Spicy" # Standard 8-bit string
t = u"Jalape\u00f1o" # Unicode string

w = s + t # Unicode : u'SpicyJalape\u00f1o"

• This propagation may break your code if it's not
expecting to receive Unicode text

264

Copyright (C) 2014, http://www.dabeaz.com 9-

Exercise 9.2

33

Time : 10 Minutes

265

Copyright (C) 2014, http://www.dabeaz.com 10-

A Few Advanced Topics

Section 10 (Optional)

1

Copyright (C) 2014, http://www.dabeaz.com 10-

Overview
• More Python features you may encounter

• Variable argument functions

• Anonymous functions and lambda

• Closures

• Function decorators

• Static and class methods

• Properties

• Packages
2

266

Copyright (C) 2014, http://www.dabeaz.com 10-

Variable Arguments

• Function that accepts any number of args

def foo(x,*args):
 ...

• Here, the arguments get passed as a tuple
foo(1,2,3,4,5)

def foo(x,*args):

(2,3,4,5)

3

1

Copyright (C) 2014, http://www.dabeaz.com 10-

Variable Arguments
• Function that accepts any keyword args

def foo(x,y,**kwargs):
 ...

• Extra keywords get passed in a dict
foo(2,3,flag=True,mode="fast",header="debug")

def foo(x,y,**kwargs):
 ...

{ 'flag' : True,
 'mode' : 'fast',
 'header' : 'debug' }

4

267

Copyright (C) 2014, http://www.dabeaz.com 10-

Variable Arguments

• A function that takes any arguments
def foo(*args,**kwargs):
 statements

• This will accept any combination of
positional or keyword arguments

• Sometimes used when writing wrappers or
when you want to pass arguments through
to another function

5

Copyright (C) 2014, http://www.dabeaz.com 10-

Passing Tuples and Dicts
• Tuples can be expand into function args

args = (2,3,4)
foo(1, *args) # Same as foo(1,2,3,4)

• Dictionaries can expand to keyword args

6

kwargs = {
 'color' : 'red',
 'delimiter' : ',',
 'width' : 400 }

foo(data, **kwargs)
Same as foo(data,color='red',delimiter=',',width=400)

• These are not commonly used except when
writing library functions.

268

Copyright (C) 2014, http://www.dabeaz.com 10-

Exercise 10.1

Time : 10 Minutes

7

Copyright (C) 2014, http://www.dabeaz.com 10-

List Sorting Revisited

• Lists can be sorted "in-place" (sort method)
s = [10,1,7,3]
s.sort() # s = [1,3,7,10]

• Sorting in reverse order
s = [10,1,7,3]
s.sort(reverse=True) # s = [10,7,3,1]

• It seems "simple" enough...

8

269

Copyright (C) 2014, http://www.dabeaz.com 10-

List Sorting

• Sometimes you need to perform extra
processing while sorting

• Example: Case-insensitive string sort

>>> s = ["hello","WORLD","test"]
>>> s.sort()
>>> s
['WORLD','hello','test']
>>>

• Here, we might like to fix the order

9

Copyright (C) 2014, http://www.dabeaz.com 10-

List Sorting
• You can fix this using a "key function"

>>> def tolower(x):
... return x.lower()
...
>>> s = ["hello","WORLD","test"]
>>> s.sort(key=tolower)
>>> s
['hello','test','WORLD']
>>>

• The key function is a "callback function" that
the sort() method applies to each item

• The value returned by the key function
determines the sort order

10

270

Copyright (C) 2014, http://www.dabeaz.com 10-

Callback Functions

• Callback functions are often short one-line
functions that are only used for that one
operation (e.g., sorting)

• Programmers often ask for a short-cut

• For example, is there some shorter way to
specify the custom processing for sort()?

11

Copyright (C) 2014, http://www.dabeaz.com 10-

Anonymous Functions
• lambda expression

names.sort(key=lambda s: s.lower())

• Creates an unnamed function that evaluates a
single expression

Same as
def lowerkey(s):
 return s.lower()

names.sort(key=lowerkey)

12

• The above code is a shorter version of this

271

Copyright (C) 2014, http://www.dabeaz.com 10-

Using lambda
• lambda is highly restricted

• Only a single expression is allowed and you
can't use statements such as if, while, print,
for, etc.

• Most common use is with sort()

• Sometimes seen with map() and filter()
functions which carry out the same work as
a list comprehension (more modern)

13

Copyright (C) 2014, http://www.dabeaz.com 10-

lambda and map()
• Legacy code example

14

>>> nums = [1,2,3,4]
>>> squares = map(lambda x: x*x, nums)
>>> squares
[1, 4, 9, 16]
>>>

• Modern implementation
>>> nums = [1,2,3,4]
>>> squares = [x*x for x in nums]
>>> squares
[1, 4, 9, 16]
>>>

• List comprehension runs 1.5-2x faster

272

Copyright (C) 2014, http://www.dabeaz.com 10-

Advice on Lambda

• Use lambda sparingly

• It's never necessary to use it and going
overboard is a good way to create a program
that's hard to figure out later

• Replace map() and filter() calls in old code
with list comprehensions

• Most popular use : with sorting

15

Copyright (C) 2014, http://www.dabeaz.com 10-

Exercise 10.2

Time : 5 Minutes

16

273

Copyright (C) 2014, http://www.dabeaz.com 10-

Returning Functions
• Consider the following function

17

def add(x,y):
 def do_add():
 print "Adding",x,y
 return x+y
 return do_add

• A function that returns another function?
>>> a = add(3,4)
>>> a
<function do_add at 0x6a670>
>>> a()
Adding 3 4
7

• Notice that it works, but ponder it...

Copyright (C) 2014, http://www.dabeaz.com 10-

Local Variables
• Observe how the inner function refers to

variables defined by the outer function

18

def add(x,y):
 def do_add():
 print "Adding",x,y
 return x+y
 return do_add

>>> a = add(3,4)
>>> a
<function do_add at 0x6a670>
>>> a()
Adding 3 4
7

• Further observe that those variables are
somehow kept alive after add() has finished

Where are these
values coming from?

274

Copyright (C) 2014, http://www.dabeaz.com 10-

Closures

• If an inner function is returned as a result,
the inner function is known as a "closure"

19

def add(x,y):
 def do_add():
 print "Adding",x,y
 return x+y
 return do_add

• Essential feature : A "closure" retains the
values of all variables needed for the function
to run properly later on

Copyright (C) 2014, http://www.dabeaz.com 10-

Closures
• To make it work, references to the outer

variables (free variables) get carried along
with the function
>>> a
<function do_add at 0x4dd30>
>>> a.__closure__
(<cell at 0x54f30: int object at 0x54fe0>,
 <cell at 0x54fd0: int object at 0x54f60>)
>>> a.__closure__[0].cell_contents
4
>>> a.__closure__[1].cell_contents
3

20

• So, think of a closure as a function, but with
an extra environment of variable definitions
that's sitting behind the scenes

275

Copyright (C) 2014, http://www.dabeaz.com 10-

Using Closures

• Closures are an essential feature of Python

• However, their use is often subtle

• Common applications:

• Use in callback functions

• Delayed evaluation

• Decorator functions (later)

21

Copyright (C) 2014, http://www.dabeaz.com 10-

Delayed Evaluation
• Go back to our original example

22

def add(x,y):
 def do_add():
 print "Adding",x,y
 return x+y
 return do_add

• This is an example of "delayed evaluation"

• add() doesn't do anything, it returns a
function that carries out work later
>>> a = add(3,4)
>>> a
<function do_add at 0x6a670>
>>> a()
Adding 3 4
7

276

Copyright (C) 2014, http://www.dabeaz.com 10-

Delayed Evaluation

• Delayed evaluation is sometimes used to
defer expensive calculations until later

• Perhaps the calculation won't be needed
after all (so if you throw it away, you haven't
paid a big penalty for doing the work)

• Also sometimes used as a trick to avoid
excessive code repetition

23

Copyright (C) 2014, http://www.dabeaz.com 10-

Exercise 10.3

Time : 15 Minutes

24

277

Copyright (C) 2014, http://www.dabeaz.com 10-

Function Decorators

• Closures are the basis for another Python
feature known as "decoration"

• A topic related to "metaprogramming"

• An advanced topic that we'll only scratch
the surface of right now

25

Copyright (C) 2014, http://www.dabeaz.com 10-

An Example
• Consider a function

def add(x, y):
 return x + y

26

• Now, consider the function with some logging
def add(x, y):
 print "Calling add"
 return x + y

• Now, a second function with some logging
def sub(x, y):
 print "Calling sub"
 return x - y

• Observation: It's kind of repetitive

278

Copyright (C) 2014, http://www.dabeaz.com 10-

Observation

• Writing programs where there is a lot of
code replication is usually really annoying

• Tedious to write

• Hard to maintain

• Especially if you decide that you want to
change how it works (i.e., a different kind of
logging perhaps).

27

Copyright (C) 2014, http://www.dabeaz.com 10-

An Example
• Perhaps you can make logging wrappers

def logged(func):
 def wrapper(*args, **kwargs):
 print 'Calling', func.__name__
 return func(*args, **kwargs)
 return wrapper

28

• Now, consider this bit of code
def add(x, y):
 return x + y

add = logged(add)

• Question: What happens here?
add(3, 4)

279

Copyright (C) 2014, http://www.dabeaz.com 10-

An Example
• This example illustrates the process of

creating a so-called "wrapper function"

• A wrapper is a function that wraps another
function with some extra bits of processing

29

>>> add(3, 4)
Calling add
7
>>>

• Notice: the logged() function creates the
wrapper and returns it as a result

extra output
(added by the wrapper)

Copyright (C) 2014, http://www.dabeaz.com 10-

Decorators
• Putting wrappers around functions is

extremely common in Python

30

def add(x, y):
 return x + y
add = logged(add)

• So common, there is special syntax for doing it
@logged
def add(x, y):
 return x + y

• This performs the exact steps as shown at
the top of the slide (it's just syntax)

• Is said to "decorate" the function

280

Copyright (C) 2014, http://www.dabeaz.com 10-

Using Decorators

• Decorators are about as close as Python gets
to having a macro system or a preprocessor

• A common use is to implement code that is
either highly repetitive or so general purpose
that it might be used by a large number of
function definitions throughout an application

• Logging is just one example

31

Copyright (C) 2014, http://www.dabeaz.com 10-

Commentary

• There are many more subtle details to
decorators than what has been presented here

• For example, using them in classes

• Or using multiple decorators with a function

• However, the previous example is a good
illustration of how their use tends to arise

32

281

Copyright (C) 2014, http://www.dabeaz.com 10-

Exercise 10.4

33

Time : 10 Minutes

Copyright (C) 2014, http://www.dabeaz.com 10-

Decorated Methods
• Predefined decorators are used to specify

special kinds of methods in class definitions
class Foo(object):
 def bar(self,a):
 ...
 @staticmethod
 def spam(a):
 ...
 @classmethod
 def grok(cls,a):
 ...
 @property
 def name(self):
 ...

34

• Will briefly describe each one

282

Copyright (C) 2014, http://www.dabeaz.com 10-

Static Methods
• @staticmethod is used to define a so-called

"static" class methods (from C++/Java)

• A function that's part of the class, but which
does not operate on instances

class Foo(object):
 @staticmethod
 def bar(x):
 print "x =", x

>>> Foo.bar(2)
x = 2
>>>

35

Copyright (C) 2014, http://www.dabeaz.com 10-

Using Static Methods

• Sometimes used to implement internal
supporting code for a class

• Example : Code to help manage created
instances (memory management, system
resources, persistence, locking, etc.)

36

283

Copyright (C) 2014, http://www.dabeaz.com 10-

Class Methods
• @classmethod is used to define class methods

• A method that receives the class object as the
first parameter instead of the instance

class Foo(object):
 def bar(self):
 print self
 @classmethod
 def spam(cls):
 print cls

>>> f = Foo()
>>> f.bar()
<__main__.Foo object at 0x971690>
>>> Foo.spam()
<class '__main__.Foo'>
>>>

37

An instance

A class

Copyright (C) 2014, http://www.dabeaz.com 10-

Using Class Methods
• Class methods are often used as a tool for

defining alternate constructors

38

class Date(object):
 def __init__(self,year,month,day):
 self.year = year
 self.month = month
 self.day = day
 @classmethod
 def today(cls):
 tm = time.localtime()
 return cls(tm.tm_year, tm.tm_mon, tm.tm_mday)

d = Date.today()

Notice how the class passed
as an argument.

284

Copyright (C) 2014, http://www.dabeaz.com 10-

Using Class Methods
• Class methods solve some tricky problems

with features like inheritance

39

class Date(object):
 ...
 @classmethod
 def today(cls):
 tm = time.localtime()
 return cls(tm.tm_year, tm.tm_mon, tm.tm_mday)

class NewDate(Date):
 ...

d = NewDate.today()

Gets the correct class
(e.g., NewDate)

Copyright (C) 2014, http://www.dabeaz.com 10-

Exercise 10.5

40

Time : 10 Minutes

285

Copyright (C) 2014, http://www.dabeaz.com 10-

Packages
• For larger collections of code, it is often

desirable to organize modules into a hierarchy

• Example : A collection of graphics modules
graphics
 graphics.primitive
 graphics.primitive.line
 graphics.primitive.fill
 graphics.primitive.text
 graphics.twod
 graphics.twod.plot
 graphics.twod.contour
 graphics.formats
 graphics.formats.png
 graphics.formats.jpg
 ...

41

Copyright (C) 2014, http://www.dabeaz.com 10-

Creating a Package

• First, organize source files as directory tree
graphics/
 primitive/
 line.py
 fill.py
 text.py
 twod/
 plot.py
 contour.py
 formats/
 png.py
 jpg.py

• This should mirror the package structure

42

286

Copyright (C) 2014, http://www.dabeaz.com 10-

Creating a Package
• Next, add __init__.py files

graphics/
 __init__.py
 primitive/
 __init__.py
 line.py
 fill.py
 text.py
 twod/
 __init__.py
 plot.py
 contour.py
 formats/
 __init__.py
 png.py
 jpg.py

• These files can be empty

43

Copyright (C) 2014, http://www.dabeaz.com 10-

Using a Package
• Importing a specific package component

import graphics.formats.jpg
f = graphics.formats.jpg.open("foo.jpg")

• Some import shortcuts

• During import, all __init__.py files execute
graphics/__init__.py
graphics/formats/__init__.py
graphics/formats/jpg.py

import graphics.formats.jpg as jpg
from graphics.formats import jpg

f = jpg.open("foo.jpg")

44

287

Copyright (C) 2014, http://www.dabeaz.com 10-

__init__.py files
• The primary purpose of __init__.py is to

supply code that must execute as parts of a
package are imported

import graphics.formats as formats
f = formats.jpg.open("foo.jpg")
g = formats.png.open("bar.png")

• Example: Automatically load submodules
graphics/formats/__init__.py

import jpg, png, tiff, gif # Load submodules

45

• Example use:

Copyright (C) 2014, http://www.dabeaz.com 10-

Package Issues

• Using a component of a package is relatively
straightforward (same as using a module)

• However, organizing code as a package
introduces a number of subtle problems

• You'll need to consult a reference for the
gory details

46

288

Copyright (C) 2014, http://www.dabeaz.com 10-

Exercise 10.6

47

Time : 10 Minutes

Copyright (C) 2014, http://www.dabeaz.com 10-

That's All Folks!

• End of the course

• Material covered should be enough to get you
going with most aspects of Python development

• Much of your work is now going to involve
features of various libraries and packages

• Hope you enjoyed the class!

48

289

Copyright (C) 2014, http://www.dabeaz.com 10-

Advanced Topics
• Here are some major areas of Python that are

covered in advanced classes

• Network programming

• Threads and concurrent programming

• Distributed computing

• Coroutines

• Objects and metaprogramming

49

Copyright (C) 2014, http://www.dabeaz.com 10-

Shameless Plug
• Buy my books!

• Twitter: @dabeaz

50

290

Practical Python Index

Symbols and Numbers

!= operator, 1-38
#, program comment, 1-29
%, floating point modulo operator, 1-53
%, integer modulo operator, 1-49
%, string formatting operator, 2-26, 2-29
&, bit-wise and operator, 1-49
&, set intersection operator, 2-22, 2-23
() operator, 5-32
(), tuple, 2-6
**, power operator, 1-53
*, list replication, 1-69
*, multiply operator, 1-49, 1-53
*, sequence replication operator, 2-32
*, string replication operator, 1-59
+, add operator, 1-49, 1-53
+, list concatenation, 1-67
+, String concatenation, 1-58, 9-4
-, set difference operator, 2-22, 2-23
-, subtract operator, 1-49, 1-53
-i option, Python interpreter, 7-29
-O option, Python interpreter, 7-27, 7-28
. operator, 5-32
... interpreter prompt, 1-14
/ division operator, 1-53
/, division operator, 1-49
//, floor division operator, 1-49, 1-50
< operator, 1-38
<<, left shift operator, 1-49
<= operator, 1-38
== operator, 1-38
> operator, 1-38
>= operator, 1-38
>>, right shift operator, 1-49
>>> interpreter prompt, 1-14
[:] string slicing,, 1-58
[:], slicing operator, 2-33
[], sequence indexing, 2-31
[], string indexing, 1-58
\ Line continuation character, 1-43
^, bit-wise xor operator, 1-49
_ variable, interactive mode, 1-15
{}, dictionary, 2-12
|, bit-wise or operator, 1-49

|, set union operator, 2-22, 2-23
~, bit-wise negation operator, 1-49

A

abs() function, 1-49, 1-53
Absolute value function, 1-49, 1-53
__abs__() method, 5-28
Accessor methods, 6-35
Accessor methods and properties, 6-43
Adding items to dictionary, 2-13
__add__() method, 5-28
Advanced String Formatting, 9-8
and operator, 1-38, 1-39
__and__() method, 5-28
anonymous function, lambda, 10-12
append() method, of deques, 4-73
append() method, of lists, 1-67
appendleft() method, of deques, 4-73
Argument naming style, 3-17
Arguments, passing mutable objects, 3-25, 3-26
argv variable, sys module, 4-26
assert statement, 7-25
assert statement, stripping in -O mode, 7-27
assertEqual() method, unittest module, 7-12
AssertionError exception, 7-25
Assertions, and unit testing, 7-12
assertNotEqual() method, unittest module, 7-12
assertRaises() method, unittest module, 7-12
assert_() method, unittest module, 7-12
assignment operations, 2-55
Assignment, copying, 2-56, 2-58
Assignment, reference counting, 2-56, 2-58
Associative array, 2-12
Attribute access functions, 5-35
Attribute binding, 6-11
Attribute lookup, 6-15, 6-18
Attribute, definition of, 5-2, 5-3
Attributes, computed using properties, 6-39, 6-42
Attributes, modifying values, 6-12
Attributes, private, 6-31, 6-32, 6-33
Awk, and list compreheneions, 2-52

B

Base class, 5-11
__bases__ attribute of classes, 6-17
Binding of attributes in objects, 6-11

Block comments, 1-29
Boolean expressions, 1-39
Boolean type, 1-46, 1-47
Booleans, and integers, 1-47
Bottom up programming style, 3-10
Bound method, 5-33, 5-34
break statement, 2-38
Breakpoint, debugger, 7-32
Built-in exceptions, 3-34

C

C3 Linearization Algorithm, 6-20, 6-22, 6-23, 6-24,
6-25
callback function, with sort(), 10-10
Calling a function, 1-83
Calling other methods in the same class, 5-9
Case conversion, 1-60
Catching exceptions, 1-86
Catching multiple exceptions, 3-36
Class implementation chart, 6-10
class methods, 10-37
class statement, 5-4
class statement, defining methods, 5-8
Class,, 6-8
Class, representation of, 6-8
class, static methods, 10-35, 10-36
Class, __slots__ attribute of, 6-44
@classmethod decorator, 10-34, 10-37
__class__ attribute of instances, 6-9
Closures, 10-19
Code blocks and indentation, 1-34
Code formatting, 1-43
Code reuse, and generators, 8-27
Colon, and indentation, 1-34
Command line arguments, manual parsing, 4-27
Command line options, 4-26
Command line, running Python, 1-23
Comments, 1-29
Community links, 1-3
Complex type, 1-46
Computed attributes, 6-39, 6-42
Concatenation of strings, 1-58
Concatenation, lists, 1-67
Concatenation, of sequences, 2-32
Conditionals, 1-37
Conditionals, on numpy arrays, 4-111
Conformance checking of functions, 3-28
Container, 2-16

Containers, dictionary, 2-19, 2-20
Containers, list, 2-17, 2-18
context manager, 3-43
continue statement, 2-39
Contract programming, 7-26
Conversion of numbers, 1-54
Converting to strings, 1-63
copy module, 2-62
copy() function, shutil module, 4-36
Copying and moving files, 4-36
copying, lack of in assignment, 2-55
copytree() function, shutil module, 4-36
cos() function, math module, 1-53
Counter objects, collections module, 4-74, 4-75, 4-76,
4-77, 4-78, 4-79, 4-80
coverage, 7-15
cPickle module, 4-72
Creating new objects, 5-4
Creating programs, 1-18
ctime() function, time module, 4-34

D

Data structure, dictionary, 6-3
Data structures, 2-5
Database like queries on lists, 2-50
date and time functions, 4-37
Date and time manipulation, 4-38
datetime module, 4-38
Debugger, 7-30
Debugger, breakpoint, 7-32
Debugger, commands, 7-32
Debugger, launching inside a program, 7-31
Debugger, running at command line, 7-33, 7-34
__debug__ variable, 7-28
decorators, 10-25
Deep copies, 2-62
deepcopy() function, copy module, 2-62
def statement, 1-83, 3-7
Defining a function, 3-7
Defining new functions, 1-83
Defining new objects, 5-4
Definition order, 3-6
del operator, lists, 1-70, 1-71
del statement, 1-32
delattr() function, 5-35
Delayed evaluation,, 10-22
Deleting items from dictionary, 2-13
__delitem__() method, 5-29

Derived class, 5-11
Design by contract, 7-26
Dictionary, 2-12
Dictionary, and class representation, 6-8
Dictionary, and module namespace, 6-4
Dictionary, and object representation, 6-5
Dictionary, testing for keys, 2-21
Dictionary, updating and deleting, 2-13
Dictionary, use as a container, 2-19, 2-20
Dictionary, use as data structure, 6-3
Dictionary, using as function keyword arguments, 10-6
Dictionary, when to use, 2-14
__dict__ attribute, of instances, 6-6, 6-7
directories, walking over a tree, 4-35
Directory listing, 4-30
distribute, 4-88
divmod() function, 1-49, 1-53
__div__() method, 5-28
doctest module, 7-4, 7-5, 7-6
doctest module, self-testing, 7-8
Documentation, 1-16
Documentation strings, and testing, 7-4, 7-5
Double precision float, 1-51
Double-quoted string, 1-55
Downloads, 1-3

E

easy_install command, 4-88
Edit,compile,debug cycle, 1-12
Eggs, Python package format, 4-88
elif statement, 1-37
else statement, 1-37
Embedded nulls in strings, 1-57
empty code blocks, 1-42
Enabling future features, 1-50
Encapsulation, 6-28
Encapsulation, and accessor methods, 6-35
Encapsulation, and properties, 6-36
Encapsulation, challenges of, 6-29
Encapsulation, uniform access principle, 6-41
endswith() method, strings, 1-61
enumerate() function, 2-42, 2-43
environ variable, os module, 4-29
Environment variables, 4-29
Error reporting strategy in exceptions, 3-39, 3-40, 3-41
Escape codes, strings, 1-56, 1-64
except statement, 1-86, 3-30
Exception base class, 5-31

Exception, defining new, 5-31
Exceptions, 1-85, 3-30
Exceptions, catching, 1-86
Exceptions, catching any, 3-37
Exceptions, catching multiple, 3-36
Exceptions, caution on use, 3-38
Exceptions, finally statement, 3-42
Exceptions, how to report errors, 3-39, 3-40, 3-41
Exceptions, ignoring, 3-37
Exceptions, list of built-in, 3-34
Exceptions, passed value, 3-35
Exceptions, propagation of, 3-31, 3-32, 3-33
Execution model, 1-28
Execution of modules, 4-7
exists() function, os.path module, 4-32, 4-33
exit() function, sys module, 3-44
Exploding heads, and exceptions, 3-38
Exponential notation, 1-51
Extended slicing of sequences, 2-34

F

False Value, 1-47
File globbing, 4-30
File system, copying and moving files, 4-36
File system, getting a directory listing, 4-30
File tests, 4-32, 4-33
File, obtaining metadata, 4-34
Files, and for statement, 1-77
Files, and with statement, 1-80
Files, end of file (EOF), 1-78, 1-79
Files, opening, 1-76
Files, reading in chunks, 1-78, 1-79
Files, reading line by line, 1-77
__file__ attribute, of modules, 4-14, 4-15, 4-16, 4-17
Filtering sequence data, 2-48
finally statement, 3-42
find() method, strings, 1-61
First class objects, 2-65
Float type, 1-46, 1-51
float() function, 1-54
Floating point numbers, 1-51
Floating point, accuracy, 1-52
Floor division operator, 1-50
__floordiv__() method, 5-28
For loop, and tuples, 2-44
For loop, keeping a loop counter, 2-42
for statement, 2-36
for statement, and files, 1-77

for statement, and generators, 8-10
for statement, and iteration, 8-2
for statement, internal operation of, 8-4
for statement, iteration variable, 2-37
Format codes, string formatting, 2-27
format() function, 2-28
format() method of strings, 9-8
Formatted output, 2-25
from module import *, 4-10
from statement, 4-9
from __future__ import, 1-50
Function, and generators, 8-10
Functions, 3-7, 3-8
Functions, accepting any combination of arguments,
10-5
Functions, argument passing, 3-11, 3-12
Functions, benefits of using, 3-7
Functions, Bottom-up style, 3-10
Functions, calling with positional arguments, 3-15
Functions, closures, 10-19
Functions, conformance checking, 3-28
functions, decorators, 10-25
Functions, default arguments, 3-14
Functions, defining, 1-83
Functions, definition order, 3-9
Functions, design of argument names, 3-17
Functions, global variables, 3-22, 3-23
Functions, keyword arguments, 3-16
Functions, lazy evaluation, 10-22
Functions, local variables, 3-21
Functions, multiple return values, 3-19
Functions, returning as a result, 10-17
Functions, side effects, 3-25, 3-26
Functions, tuple and dictionary expansion, 10-6
Functions, variable number of arguments, 10-3, 10-4

G

Garbage collection, 1-32
Generating text, 9-3
Generator, 8-10, 8-11
Generator expression, 8-22, 8-23, 8-24
Generator tricks presentation, 8-30
Generator, and code reuse, 8-27
Generator, and StopIteration exception, 8-13
Generator, producer-consumer problems, 8-15
Generator, use of, 8-26
Generators, processing pipelines, 8-16
getatime() function,, 4-34

getattr() function, 5-35
__getitem__() method, 5-29
getmtime() function, os.path module, 4-34
getrefcount() function, sys module, 2-60
getsize() function, os.path module, 4-34
glob module, 4-30
global statement, 3-24
Global variables, 3-20, 4-5, 4-6
Global variables, accessing in functions, 3-22
Global variables, modifying inside a function, 3-23
Guido van Rossum, 1-2

H

hasattr() function, 5-35
Hash table, 2-12
Haskell, list comprehension, 2-51
has_key() method, of dictionaries, 2-21
help() command, 1-16

I

Identifiers, 1-30
IDLE, 1-9, 1-10
IDLE, creating new program, 1-19, 1-20
IDLE, on Mac or Unix, 1-11
IDLE, running programs, 1-22
IDLE, saving programs, 1-21
IEEE 754, 1-51
if statement, 1-37
Ignoring an exception, 3-37
Immutable objects, 1-62
import statement, 1-84, 4-3
import statement, from modifier, 4-9
import statement, importing all symbols, 4-10
import statement, repeated, 4-18
import statement, search path, 4-19, 4-20
import, as modifier, 4-8
in operator, dictionary, 2-21
in operator, lists, 1-69
in operator, strings, 1-59
Indentation, 1-33, 1-34
Indentation style, 1-35, 1-36
index() method, strings, 1-61
Indexing of lists, 1-68
Infinite data streams, 8-28
Inheritance, 5-11, 5-14
Inheritance example, 5-13

Inheritance, and isa relationship, 5-17
Inheritance, and object base, 5-18
Inheritance, and polymorphism, 5-22
Inheritance, and __init__() method, 5-20
Inheritance, implementation of, 6-17, 6-19
Inheritance, multiple, 5-23, 6-20, 6-22, 6-23, 6-24,
6-25
Inheritance, multiple inheritance, 6-21
Inheritance, organization of objects, 5-15, 5-16
Inheritance, redefining methods, 5-19, 5-21
Inheritance, uses of, 5-12
Initialization of objects, 5-6
__init__() method in classes, 5-6
__init__() method, and inheritance, 5-20
__init__.py files, 10-43
insert() method, of lists, 1-67
Instance data, 5-7
Instances, and __class__ attribute, 6-9
Instances, creating new, 5-5
Instances, modifying after creation, 6-13
Instances, representation of, 6-6, 6-7
int() function, 1-54
Integer division, 1-50
Integer type, 1-46
Integer type, operations, 1-49
Integer type, precision of, 1-48
Interactive mode, 1-12, 1-13, 1-14
Interactive mode, last result, 1-15
Interpreter prompts, 1-14
__invert__() method, 5-28
is operator, 2-60
Isa relationship and inheritance, 5-17
isalpha() method, strings, 1-61
isdigit() method, strings, 1-61
isdir() function, os.path module, 4-31, 4-32, 4-33
isfile() function, os.path module, 4-31, 4-32, 4-33
isinstance() function, 2-64
islower() method, strings, 1-61
Item access methods, 5-29
Iterating over a sequence, 2-36
Iteration, 8-2
Iteration protocol, 8-4
Iteration variable, for loop, 2-37
iteration, over lists, 1-72
Iteration, supporting in classes, 8-6
Iteration, user defined, 8-9
itertools module, 8-7, 8-29
__iter__() method, 8-4

J

join() function, os.path module, 4-31
join() method, of strings, 9-5
join() method, strings, 1-61
json module, 4-59
JSON parsing, 4-59

K

key argument to sort(), 10-10
key function, sorting, 10-10
KeyboardInterrupt exception, 3-44
Keys, dictionary, 2-12
Keyword arguments, 3-16
Keywords, 1-31

L

lambda expression, 10-12
lambda expression, uses of, 10-13
Lazy evaluation, 8-28, 10-22
len() function, 2-31, 5-29
len() function, lists, 1-69
len() function, strings, 1-59
__len__() method, 5-29
Library modules, 1-84
Line continuation, 1-43
List, 2-31
List comprehension, 2-47, 2-48, 2-49
List comprehension uses, 2-50
list comprehension, versus map(), 10-14
List comprehensions and awk, 2-52
List concatenation, 1-67
List replication, 1-69
List type, 1-67
list() function, 2-61
List, Looping over items, 2-36
List, math operations, 1-74
List, sorting, 1-73
List, use as a container, 2-17, 2-18
listdir() function, os module, 4-30
Lists, changing elements, 1-68
Lists, indexing, 1-68
Lists, iterating over, 1-72
Lists, removing items, 1-70, 1-71
Lists, searching, 1-69

lists, sorting, 10-8
Local variables, 3-20
Local variables in functions, 3-21
log() function, math module, 1-53
logging module, 7-17
Long type, 1-46
long() function, 1-54
Looping over integers, 2-40
Looping over items in a sequence, 2-36
Looping over multiple sequences, 2-45
lower() method, strings, 1-60, 1-61
__lshift__() method, 5-28

M

Main program, 4-14, 4-15, 4-16, 4-17
main() function, unittest module, 7-13
__main__, 4-14, 4-15, 4-16, 4-17
__main__ module, 7-8
map() function, 10-14
math module, 1-53, 1-84
Math operators, 5-28
Math operators, floating point, 1-53
Math operators, integer, 1-49
matplotlib, 4-126
matplotlib, plotting example, 4-127, 4-128
matrices, numpy extension, 4-113
max() function, 2-35
Memory efficiency, and generators, 8-28
Method invocation, 5-32
Method, definition of, 5-2, 5-3
Methods, calling in base class, 6-26
Methods, calling other methods in the same class, 5-9
Methods, in classes, 5-8
min() function, 2-35
mock, 7-15
Modules, 4-3
modules variable, sys module, 4-18
Modules, execution of, 4-7
Modules, loading of, 4-18
Modules, namespaces, 4-4
Modules, search path, 4-19, 4-20
Modules, self-testing with doctest, 7-8
__mod__() method, 5-28
move() function, shutil module, 4-36
__mro__ attribute, of classes, 6-20, 6-22, 6-23, 6-24,
6-25
Multiple inheritance, 5-23, 6-20, 6-21, 6-22, 6-23,
6-24, 6-25

__mul__() method, 5-28

N

Namespaces, 4-4
__name__ attribute, of modules, 4-14, 4-15, 4-16, 4-17
Naming conventions, Python's reliance upon, 6-30
Negative indices, lists, 1-68
__neg__() method, 5-28
Nested functions, 10-17
next() method, and iteration, 8-4
next() method, of generators, 8-12
no-op statement, 1-42
None type, 2-4
None type, returned by functions, 3-18
nose, 7-15
not operator, 1-38, 1-39
Notable third party packages, 4-83
Null value, 2-4
Numeric conversion, 1-54
Numeric datatypes, 1-46
numpy, 4-95, 4-116, 4-117, 4-118, 4-119, 4-120, 4-121,
4-122, 4-123, 4-124
numpy, array access, 4-100
numpy, array math, 4-107
numpy, arrays, 4-96
numpy, conditionals, 4-111
numpy, matrices, 4-113
numpy, universal functions, 4-109

O

object base class, 5-18
object identity, 2-60
Object oriented programming, 5-2, 5-3
Object oriented programming, and encapsulation, 6-28
Objects, attribute binding, 6-15, 6-18
Objects, attributes of, 5-7
Objects, calling methods in base class, 6-26
Objects, creating containers, 5-29
Objects, creating new instances, 5-5
Objects, creating private attributes, 6-31, 6-32, 6-33
Objects, defining new, 5-4
Objects, first class behavior, 2-65
objects, getting the reference count, 2-60
Objects, inheritance, 5-11
Objects, invoking methods, 5-5
Objects, making a deep copy of, 2-62

Objects, method invocation, 5-32
Objects, modifying attributes of instances, 6-12
Objects, modifying instances, 6-13
Objects, multiple inheritance, 6-21
Objects, reading attributes, 6-14
Objects, representation of, 6-10
Objects, representation of instances, 6-6, 6-7
Objects, representation with dictionary, 6-5
Objects, saving with pickle, 4-72
Objects, single inheritance, 6-19
Objects, special methods, 5-25
Objects, type checking, 2-64
Objects, type of, 2-63
Old-style classes, 5-18
Online help, 1-16
open() function, 1-76
Optimized mode, 7-28
Optimized mode (-O), 7-27
Optional features, defining function with, 3-16
Optional function arguments, 3-14
or operator, 1-38, 1-39
organizing code into a package, 10-41
__or__() method, 5-28
os module, 4-28
os.path module, 4-31, 4-34
os.walk() function, 4-35
Output, print statement, 1-40

P

packages, 10-41
Packing values into a tuple, 2-9
Parallel iteration, 2-45
pass statement, 1-42
path variable, sys module, 4-19, 4-20
pdb module, 7-30
pdb module, commands, 7-32
Performance statistics, profile module, 7-35
Perl, difference in string handling, 1-82
Perl, string interpolation and Python, 9-7
pickle module, 4-72
Pipelines, and generators, 8-26
Pipelines, creating with generators, 8-16
plotting, matplotlib example, 4-127, 4-128
Polymorphism, and inheritance, 5-22
pop() method, of deques, 4-73
popleft() method, of deques, 4-73
Positional function arguments, 3-15
Post-assertion, 7-26

pow() function, 1-49, 1-53
Powers of numbers, 1-49
__pow__() method, 5-28
Pre-assertion, 7-26
Primitive datatypes, 2-3
print statement, 1-40, 4-24, 4-25, 5-26, 5-27
print statement, and files, 1-76
print statement, and str(), 1-63
print statement, trailing comma, 1-40
print, formatted output, 2-26, 2-29
Private attributes, 6-31, 6-32, 6-33
Producer-consumer problem, with generators, 8-15
profile module, 7-35
Profiling, 7-35
Program exit, 3-44
Program structure, definition order, 3-6
Propagation of exceptions, 3-31, 3-32, 3-33
Properties, and encapsulation, 6-36
@property decorator, 6-36, 10-34
property() function, 6-43
py files, 1-18
Python Documentation, 1-16
Python eggs packages, 4-88
Python interpreter, 1-12
Python interpreter, keeping alive after execution, 7-29
Python interpreter, optimized mode, 7-27, 7-28
Python package index, 4-82
python versions, 1-4
Python, reason created, 1-5
Python, running on command line, 1-23
Python, source files, 1-18
Python, starting on Mac, 1-11
Python, starting on Unix, 1-11
Python, starting on Windows, 1-10
Python, starting the interpreter, 1-8
Python, statement execution, 1-28
Python, uses of, 1-6, 1-7
Python, year created, 1-2
python.org website, 1-3

R

raise Statement, 1-87
raise statement, 3-30
Raising exceptions, 1-87
range() function, 2-41
range() vs. xrange(), 2-41
Raw strings, 1-56, 1-64
raw_input() function, 1-41

re module, 4-42
Read-eval loop, 1-13
Reading attributes on objects, 6-14
Reading from keyboard, 1-41
readline() method, files, 1-76
Redefining methods with inheritance, 5-19, 5-21
Redefining output file, 4-24, 4-25
Redirecting print to a file, 1-76
referenc count, obtaining on an object, 2-60
Reference counting, 2-61
regular expressions, 4-42
Relational operators, 1-38
remove() method, lists, 1-70, 1-71
Repeated imports, 4-18
replace() method, strings, 1-60, 1-61
Replacing text, 1-60
Replication of sequences, 2-32
repr() function, 5-26, 5-27
Representation of strings, 1-57
__repr__() method, 5-26, 5-27
Reserved names, 1-31
return statement, 3-18
return statement, multiple values, 3-19
rfind() method, strings, 1-61
rindex() method, strings, 1-61
rmtree() function, shutil module, 4-36
Rounding errors, floating point, 1-52
__rshift__() method, 5-28
Ruby, string interpolation and Python, 9-7
run() function, pdb module, 7-33, 7-34
runcall() function, pdb module, 7-33, 7-34
runeval() function, pdb module, 7-33, 7-34
Running Python, 1-8
Runtime error vs. compile-time error, 3-29

S

safe_substitute() method, of Template objects, 9-9
Sample Python program, 1-25
Scope of iteration variable in loops, 2-37
Scripting, 3-3
Scripting language, 1-2
Scripting, defined, 3-4
Scripting, problem with, 3-5
self parameter of methods, 5-7, 5-8
Sequence, 2-31
Sequence, concatenation, 2-32
Sequence, extended slicing, 2-34
Sequence, indexing, 2-31

Sequence, length, 2-31
Sequence, looping over items, 2-36
Sequence, replication, 2-32
Sequence, slicing, 2-33
Sequence, string, 1-57
Set theory, list comprehension, 2-51
Set type, 2-22, 2-23
set() function, 2-22, 2-23
setattr() function, 5-35
__setitem__() method, 5-29
setup.py file, third party modules, 4-87
setuptools module, 4-88
set_trace() function, pdb module, 7-31
Shallow copy, 2-61
Shell operations, 4-36
shutil module, 4-36
Side effects, 3-25, 3-26
sin() function, math module, 1-53
Single-quoted string, 1-55
Slicing operator, 2-33
__slots__ attribute of classes, 6-44
sort() method, of lists, 1-73
sort() method, of Lists, 10-10
Sorting lists, 1-73
Source files, 1-18
Source files, and modules, 4-3
Special methods, 5-25
split() method, strings, 1-61, 1-66
Splitting text, 1-66
sqrt() function, math module, 1-53
Standard I/O streams, 4-24, 4-25
Standard library, 4-22
startswith() method, strings, 1-61
Statements, 1-28
static methods, 10-35, 10-36
@staticmethod decorator, 10-34, 10-35, 10-36
stderr variable, sys module, 4-24, 4-25
stdin variable, sys module, 4-24, 4-25
stdout variable, sys module, 4-24, 4-25
StopIteration exception, 8-5
StopIteration exception, and generators, 8-13
str() function, 1-63, 5-26, 5-27
String concatenation, performance of, 9-4
String format codes, 2-27
String formatting, 2-26, 2-29
String interpolation, 9-7
String joining, 9-5
String joining vs. concatenation, 9-6
String templates, 9-9

String type, 2-31
strings, case insensitive sorting, 10-9
Strings, concatenation, 1-58
Strings, conversion to, 1-63
Strings, conversion to numbers, 1-54, 1-82
Strings, escape codes, 1-55, 1-56, 1-64
Strings, format() function, 2-28
Strings, immutability, 1-62
Strings, indexing, 1-58
Strings, length of, 1-59
Strings, literals, 1-55
Strings, methods, 1-60, 1-61
Strings, raw strings, 1-56, 1-64
Strings, replication, 1-59
Strings, representation, 1-57
Strings, searching for substring, 1-59
Strings, slicing, 1-58
Strings, splitting, 1-66
Strings, triple-quoted, 1-55
strip() method, strings, 1-60, 1-61
Stripping characters, 1-60
Subclass, 5-11
substitute() method, of Template objects, 9-9
__sub__() method, 5-28
sum() function, 2-35
super() function, 6-26, 6-27
Superclass, 5-11
sys module, 4-23
system() function, os module, 4-28
SystemExit exception, 3-44

T

tan() function, math module, 1-53
Template strings, 9-9
TestCase class, of unittest module, 7-10
Testing, 7-3
Testing files, 4-32, 4-33
testmod() function, doctest module, 7-6
Text replacement, 1-60
Text strings, 1-57
Third party modules, 4-82, 4-84
Third party modules, and C/C++ code, 4-89
Third party modules, eggs format, 4-88
Third party modules, native installer, 4-85
Third party modules, setup.py file, 4-87
Third party modules, system installer, 4-86
time module, 4-34, 4-37
Tracebacks, 1-87

Triple-quoted string, 1-55
True value, 1-47
Truncation, integer division, 1-50
Truth values, 1-38, 1-39
try statement, 1-86, 3-30
Tuple, 2-6, 2-31
Tuple, immutability of, 2-8
Tuple, packing values, 2-9
Tuple, unpacking in for-loop, 2-44
Tuple, unpacking values, 2-10
Tuple, use of, 2-7
Tuple, using as function arguments, 10-6
Type checking, 2-64
Type conversion, 1-82
Type of objects, 2-63
type() function, 2-63, 2-64
Types, 1-30
Types, numeric, 1-46
Types, primitive, 2-3

U

Uniform access principle, 6-41
Unit testing, 7-9
unittest module, 7-9, 7-10
unittest module, example of, 7-11
unittest module, running tests, 7-13
universal functions, numpy, 4-109
Unpacking values from tuple, 2-10
upper() method, strings, 1-60, 1-61
urllib module, 1-84
urlopen() function, urllib module, 1-84
User input, 1-41
User-defined exceptions, 5-31

V

Value of exceptions, 3-35
Variable assignment, 2-56, 2-58
Variable assignment, assignment of globals in function,
3-24
Variable assignment, global vs. local, 3-20
Variable number of function arguments, 10-3, 10-4
Variables, and modules, 4-5, 4-6
Variables, lifetime of, 1-32
Variables, names of, 1-30
Variables, scope in functions, 3-21, 3-22
Variables, type of, 1-30

W

walking over a directory tree, 4-35
where() function, numpy, 4-111
while statement, 1-33
Windows, starting Python, 1-10
with statement, 1-80, 3-43
write() method, files, 1-76

X

XML parsing, 4-52
xml.etree.ElementTree module, 4-54
__xor__() method, 5-28
xrange() function, 2-40
xrange() vs. range(), 2-41

Z

zeros() function, numpy, 4-96
zip() function, 2-45

